Edexcel Maths D2

Mark Scheme Pack

2003-2015

Solutions

1. (a)

	$A(\mathrm{I})$	$A(\mathrm{II})$
$B(\mathrm{I})$	3	-4
$B(\mathrm{II})$	-2	1
$B(\mathrm{III})$	-5	4

B2, 1, $0 \quad 2$
(b) e.g. matrix becomes

	$A(\mathrm{I})$	$A(\mathrm{II})$
$B(\mathrm{I})$	9	2
$B(\mathrm{II})$	4	7
$B(\mathrm{III})$	1	10

Defines variables (-including non-zero constants)

M1

B1
e.g. \quad maximise $P=V$
subject to $\quad v-9 q_{1}-4 q_{2}-q_{3}+r=0$
$v-2 q_{1}-7 q_{2}-10 q_{3}+s=0$
$q_{1}+q_{2}+q_{3}+t=1$
OR
e.g. minimise $P=x_{1}+x_{2}+x_{3}$ where $x_{\mathrm{i}}=\frac{q_{\mathrm{i}}}{v}$
subject to $9 x_{1}+4 x_{2}-x_{3}+r=1$

$$
2 x_{1}-7 x_{2}-10 x_{3}+s=1
$$

A2 ft, $1 \mathrm{ft}, 0 \quad 4$
OR
e.g. maximise $P=V$
$v-8 q_{1}-3 q_{2}+R=0$
$v-8 q_{1}-3 q_{2}+S=0$
2. (a) In the practical TSP each vertex must be visited at least once

B1
B1 2
(b) $A B, D F, D E,($ reject $E F),\left\{\begin{array}{c}F G \\ A C\end{array}\right\} E H\left\{\begin{array}{c}D C \\ \text { or } \\ B E\end{array}\right\}$

B1 3
(c) Initial upper bound $=2 \times 85=170 \mathrm{~km}$

M1 A1 2
(d) e.g. when $C D$ is part of the tree
use $G H$ (saving 26) and $B D$ (saving 19) giving new u. b.
of 125 km
Tour A B D E H G F D C A
(or e.g. when $B E$ is part of the tree
use $C G$ (saving 40) giving new upper bound of 130 km ;
Tour ABEHEDFGCA)
3. (a) (i) Either rows then columns giving

	I	II	III	IV	
C	0	22	16	4	
J	1	20	24	0	then
N	1	18	18	0	
S	1	23	26	0	

	I	II	III	IV		
C	0	4	0	4		
J	1	2	8	0	M1, A1, A1	3
N	1	0	2	0		
S	1	5	10	0		

3 lines only needed $\left.\begin{array}{l}\square \\ \text { (or } \\ \square\end{array}\right)$ least element 1 so

	I	II	III	IV			I	II	III	IV	M1, A1, A1	
C	0	4	0	5		C	0	5	0	5		
J	0	1	7	0	or	J	0	2	7	0		
N	1	0	2	1		N	0	0	1	0		
S	0	4	9	0		S	0	5	9	0		

Alternative
(a) (i) or columns then rows giving

	I	II	III	IV
C	1	2	0	6
J	2	0	8	2
N	4	0	4	4
S	0	1	8	0

(then no change)
M1, A1

3 lines only needed \square and either row 1 or column 3
if row 1: least uncovered 2

	I	II	III	IV
C	1	4	0	6
J	0	0	6	0
N	2	0	2	2
S	0	3	8	0

if column 3: least uncovered 1

	I	II	III	IV
C	0	2	0	5
J	1	0	8	1
N	3	0	4	3
S	0	2	9	0

Then least uncovered 1
M1 A1 M1 A1 6

	I	II	III	IV
C	0	3	0	5
J	0	0	7	0
N	2	0	3	2
S	0	3	9	0

(ii) $\quad C$ - III, J - I or IV, N - II, S - IV or I 83 minutes $\therefore 11.23$ a.m.

M1 A1
M1 A1 4
(b) Subtracting all entries from some $n \geq 36$ (stated)
e.g. subtractions from 36

	I	II	III	IV
C	24	2	8	20
J	23	4	0	24
N	21	4	4	22
S	25	3	0	26

4. (a) Player A : row minimums are $-1,0,-3$ so maximin choice is play II M1 A1 Player B : column maximums are 2,3 , 3 so minimax choice is play I M1 A1 4
(b) Since A 's maximin $(0) \neq B$'s minimax (2) there is no stable solution B1 1
(c) For player A row II dominates row III, so A will now play III

B2, 1, $0 \quad 2$
(d) Let A play I with probability p and II with probability $(1-p)$

If B plays I, A 's expected winnings are $2 p+(1-p)=1+p$
If B plays II, A 's expected winnings are $-p+3(1-p)=3-4 p \quad$ M1, A2, 1, $0 \quad 3$
If B plays III, A 's expected winnings are $3 p$

$3-4 p=3 p \Rightarrow p=\frac{3}{7}$
A should play I with probability $\frac{3}{7}$
A should play II with probability $\frac{4}{7}$
and never play III
The value of the game is $\frac{9}{7}$ to A
A1 ft 4
5. (a) e.g.

	D	E	F			D	E	F	
A	6				A	6	0		
B	0	5			or	B		5	
C		4	4			C		4	4

M1 A1

cost £470
A1 3
(b) $\quad S_{A}=0, S_{B}=0, S_{C}=-10$
$S_{A}=0, S_{B}=-10, S_{C}=-20$
$D_{D}=20, D_{E}=30, D_{F}=40$
$D_{D}=20, D_{E}=40, D_{F}=50$
$I_{A E}=40-30=10$
$I_{A F}=10-50=-40$
$I_{A F}=10-40=-30$
$I_{B D}=20-10=10$
$I_{B F}=40-40=0$
$I_{B F}=40-40=0$
$I_{C D}=10-10=0$
$I_{C D}=10-0=10 \quad$ M1 A1 4
Choose $A F$ as entering route
$A F(+) \rightarrow C F(-) \rightarrow C E(+) \rightarrow B E(-) \quad A F(+) \rightarrow C F(-) \rightarrow C E(+) \rightarrow A E(-)$
$\rightarrow B D(+) \rightarrow A D(-)$
Exiting route CF $\theta=4$
Exiting route $A E \theta=0$
M1 A1 ft

	D	E	F
A	2		4
B	4	1	
C		8	

	D	E	F
A	6		0
B		5	
C		4	4

A1 3
$S_{A}=0, S_{B}=0, S_{C}=-10$
$S_{A}=0, S_{B}=30, S_{C}=20$
$D_{D}=20, D_{E}=30, D_{F}=10$
$D_{D}=20, D_{E}=0, D_{F}=10$
$I_{A E}=10, I_{B F}=30$,
$I_{C D}=0, I_{C F}=30$
\therefore optimal, cost $£ 350$
$I_{A E}=40, I_{B D}=-30$,
$I_{B F}=20, I_{C D}=-30 \quad$ M1 A1 A1
$C D(+) \rightarrow A D(-) \rightarrow A F(+) \rightarrow C F(-)$
$\theta=4$

	D	E	F
A	2		4
B		5	
C	4	4	

$$
\begin{aligned}
& S_{A}=0, S_{B}=0, S_{C}=-10 \\
& D_{D}=20, D_{E}=30, D_{F}=10 \\
& I_{A E}=10, I_{B D}=0, I_{B F}=30, I_{C F}=30
\end{aligned}
$$

\therefore optimal, cost $£ 350$
6. (a) Total cost $=2 \times 40+350+200=£ 630$

M1 A1 2
(b)

Stage	Demand	State	Action	Destination	Value
(2) Oct	(5)	(1)	(4)	(0)	$(590+200=790)$
		(2)	(3) (4)	(0) (1)	$280+200=480$
		(3)	(2)	0	$320+240=870$
			3	1	$320+240=520$
			4	2	$670+80=750$
3	3	0	4	1	$550+790=1340$
Sept					
		1	3	1	$240+790=1030$
			4	2	$590+480=1070$
4	3	0	3	0	$200+1340=1540$
Aug			4	1	$550+1030=1580$

M1 A1

M1 A1 4

M1 A1

M1 A1 ft

M1 A1 ft 6

Month	August	September	October	November
Make	3	4	4	2

cost $=£ 1540$
M1 A1

A1 ft 3
(c) Profit per cycle $=13 \times 1400$
= 18200
Cost of Kim's time $=£ 2000$
Cost of production $=£ 1540$
\therefore Total profit $=18200-3540$
$=£ 14660$
7. (a) Adds S and T and arcs
$S S_{1} \geq 45, S S_{2} \geq 35, T_{1} T \geq 24, T_{2} T \geq 58$
(b) Using conservation of flow through vertices $x=16$ and $y=7$

A1 2
(c) $C_{1}=86, C_{2}=81$

B1 B1 2
B1 B2 3
(d)

$\begin{array}{lllr} & & \text { M1 A1 } \\ & & \text { dM1 } \\ \text { e.g. } & S S_{1} A D E H T_{2} T & -2 & \text { A1 } \\ & S S_{1} A C F E H T_{1} T & -3 & \text { A1 } \\ & S S_{2} B G D T_{2} T & -2 & \text { A1 }\end{array}$
(e) e.g.:

Flow 75
M1 A1
A1 3
(f) Max flow - min cut theorem cut through
$C F, C E, A D, B D, B G$ (value 75)
dM1
A1 2
8. (a) $2 x+3 y+4 z \leq 8$
$P=8 x+9 y+5 z$
(b)

\downarrow						
b.v	x	y	z	r	s	Value
r	2	3	4	1	0	8
s	3	3	1	0	1	10
P	-8	-9	-5	0	0	0

\downarrow						
b.v	x	y	z	r	s	Value
y	$\frac{2}{3}$	1	$\frac{4}{3}$	$\frac{1}{3}$	0	$\overline{3}$

b.v	x	y	z	r	s	Value	$R_{1}-\frac{2}{3} R_{2}$	
y	0	1	$\frac{10}{3}$	1	$-\frac{2}{3}$	$\frac{4}{3}$		A1
x	1	0	-3	-1	1	2		M1
P	0	0	1	1	2	28	$R_{3}+2 R_{2}$	A1

(c) $\quad P=28$

$$
\begin{aligned}
& x=2, y=\frac{4}{3} \\
& z=0, r=0, s=0
\end{aligned}
$$

M1
A1
A1 3

1. (a) A game in which the gain to one player is equal

B2, 1, $0 \quad 2$ to the loss of the other
(b) If there is a stable solution(s) $a_{i j}$ in a game, the location B2, 1, $0 \quad 2$ of this stable solution is called the saddle point. It is the point(s) where row maximum = column maximum.
2. Subtract all terms from some $n \geq 35$, e.g. 35

4	11	3	0
19	25	16	13
16	21	15	14
17	20	14	12

Reducing rows then columns

2	4	2	0
4	5	2	0
0	0	0	0
3	1	1	0

1	3	1	0
3	4	1	0
0	0	0	1
2	0	0	0

M1
A1 ft
e.g. matching

$D-A$		A		M	
$H-S$	or	S	or	S	or
K-M		L		A	
$T-L$		M		L	
T		L			

A1 ft

A1 4

Total 88 points
3. (a) (i) Minimum connector using Prim: $A C, C B, C D, C E$

M1 A1
$\{1,3,2,4,5\}$ M1 A1 4

M1 A1
A1 3
(b) Residual minimum connector is $A C, C B, C D$

Length 254
Lower bound $=254+103+115=472$
(c) $472 \leq$ solution ≤ 552

M1
A1
M1 A1 4
B1 ft 1
4. (a)

$$
\left(\begin{array}{ccc}
-4 & -1 & 3 \\
2 & 1 & -2
\end{array}\right) \quad \begin{gathered}
-4 \\
-2
\end{gathered} \quad \leftarrow \max
$$

Col. max

$$
\begin{array}{lcl}
2 & 1 & 3 \\
& \uparrow \\
\min \\
-2 & \neq 1 & \therefore \text { not stable }
\end{array}
$$

(b) Let Emma play R_{1} with probability p

If Freddie plays C_{1}, Emma's winnings are $-4 p+2(1-p)=2-6 p$

$$
\begin{array}{lrr}
C_{2} \text {, Emmas winnings are }-p+1(1-p)=1-2 p & \text { M1 A1 } \\
C_{3} \text {, Emma's winnings are } 3 p-2(1-p)=-2+5 p & \text { A1 } & 3
\end{array}
$$

Need intersection of

$$
\begin{gathered}
2-6 p \text { and }-2+5 p \\
2-6 p=-2+5 p, \\
4=11 p, \\
p=\frac{4}{11}
\end{gathered}
$$

M1

So Emma should play R_{1} with probability $\frac{4}{\frac{11}{7}}$

$$
R_{2} \text { with probability } \overline{11}
$$

The value of the game is $-\frac{2}{11}$ to Emma
(c) Value to Freddie $\frac{2}{11}$, matrix $\left(\begin{array}{cc}4 & -2 \\ 1 & -1 \\ -3 & 2\end{array}\right)$
5. (a) Idea of many supply and demand points and many B2, 1, $0 \quad 2$ units to be moved. Costs are variable and dependent upon the supply and demand points, need to minimise costs. Practical costs proportional to number of units
(b) Supply $=120$ Demand $=110$ so not balanced B1 1
(c) Adds 0, 0, 0, 10 to column f

	d	e	f
A	45		
B	5	30	
C		30	10

Cost 545
B1 ft 5
(d) $\begin{array}{lll}R_{1}=0 & R_{2}=-1 & R_{3}=-3\end{array}$
$k_{1}=5 \quad k_{2}=7 \quad k_{3}=3$
M1 A1
$A e=3-0-7=-4$
Af $=0-0-3=-3 \quad$ M1 A1 ft
$B f=0+1-3=-2$
A1 ft 5
$C d=2+3-5=0$
(e) $\mathrm{Ae}^{+} \rightarrow \mathrm{Be}^{-} \rightarrow \mathrm{Bd}^{+} \rightarrow \mathrm{Ad}^{-}$send 30

M1 A1 ft

	d	e	f
A	15	30	
B	35		
C		30	10

	depM1
	A1 ft
Cost 425	A1

6. (a) Stage - Number of weeks to finish B1

State - Show being attended
B1
Action - Next journey to undertake
B1 3
(b) eg

Stage	State	Action	Value
1	$\begin{aligned} & F \\ & G \\ & H \end{aligned}$	F - Home G - Home H- Home	$\begin{aligned} & 500-80=420 * \\ & 700-90=610 * \\ & 600-70=530 * \end{aligned}$
2	D	$\begin{aligned} & D F \\ & D G \\ & D H \end{aligned}$	$\begin{aligned} & 1500-200+420=1720 \\ & 1500-160+610=1950 * \\ & 1500-120+530=1910 \end{aligned}$
	E	$\begin{aligned} & E F \\ & E G \\ & E H \end{aligned}$	$\begin{aligned} & 1300-170+420=1550 \\ & 1300-100+610=1810 \\ & 1300-110+530=1720 \end{aligned} *$
	A	$\begin{aligned} & A D \\ & A E \end{aligned}$	$\begin{aligned} & 900-180+1950=2670 * \\ & 900-150+1810=2560 \end{aligned}$
3	B	$\begin{aligned} & B D \\ & B E \end{aligned}$	$\begin{aligned} & 800-140+1950=2610 * \\ & 800-120+1810=2490 \end{aligned}$
	C	$\begin{aligned} & C D \\ & C E \end{aligned}$	$\begin{aligned} & 1000-200+1950=2750 * \\ & 1000-210+1810=2600 \end{aligned}$
4	Home	Home - A Home - B Home - C	$\begin{aligned} & -70+2670=2600 * \\ & -80+2610=2530 \\ & -150+2750=2600 * \end{aligned}$

M1 A1
(c) Home
 B2 ft 1 ft 0

B1 ft 3
7. (a) $x=9, y=16$

B1 B1 2
(b) Initial flow = 53 - Either finds a flow-augmenting route or demonstrates not enough saturated arcs for a minimum cut

B1 B1 2
(c)

M1A1 2
IFDA - 2
max flow - 64
A1
B1 3
(d) eg
M1 A1 2

(e) Max flow - min cut
Finds a cut $G C, A F, D F, D J, E I, E H$ value 64
A1 2
Note: must not use supersource or supersink arcs.
8. (a) Yes, there are no negative values in the profit row B1 1
(b) $p=63, x=0, y=7, z=0, r=\frac{9}{2}, s=\frac{2}{3}, t=0$
M1, A1, A1, 3
(c) $\frac{63}{7}=9$
M1, A1 2
9.
(a) $\mathrm{C}_{1}=7+14+0+14=35$ B1
$\mathrm{C}_{2}=7+14+5=26$
B1
$\mathrm{C}_{3}=8+9+6+8=31$
B1 3
(b) Either Min cut = Max flow and we have a flow of 26 and a cut of 26 or C2 is through saturated arcs B1 1
(c) Using EJ (capacity 5) e. g - will increase flow by 1- ie increase it to M1 27 since only one more unit can leave E. A1 - BEJL - 1

Using FH (capacity 3) e. g.- will increase flow by 2 - ie increase it to 28 since only two more units can leave F.

- BFHJL-2

Thus choose option 2 add FH capacity 3.
A1 3
10. (a) Maximise

$$
\mathrm{P}=50 x+80 y+60 z
$$

subject to

$$
x+y+2 z \leq 30
$$

$$
x+2 y+z \leq 40
$$

$$
3 x+2 y+z \leq 50
$$

B3, 2, 1,0 4
where

$$
x, y, z \geq 0
$$

(b) Initialising tableau

B1ft M1

bv	x	y	z	r	s	t	value
r	1	1	2	1	0	0	30
s	1	2	1	0	1	0	40
t	3	2	1	0	0	1	50
p	-50	-80	-60	0	0	0	0

chooses correct pivot, divides R_{2} by 2
states correct row operation $R_{1}-R_{2}, R_{3}-2 R_{2}, R_{4}+80 R_{2}, R_{2} \div 2$

A1 ft
A1 4
(c) The solution found after one iteration has a stack of 10 units of black per day

B2, 1, $0 \quad 2$
(d) (i)

bv	x	y	z	r	s	t	value
r	$1 / 2$	0	$3 / 2$	1	$-1 / 2$	0	10
y	$1 / 2$	1	$1 / 2$	0	$1 / 2$	0	20
(given)							
t	2	0	0	0	-1	1	10
p	-10	0	-20	0	40	0	1600

bv	x	y	z	r	s	t	value
z	$1 / 3$	0	1	$2 / 3$	$-1 / 3$	0	$6^{2 / 3}$
y	$1 / 3$	1	0	$-1 / 3$	$2 / 3$	0	$16^{2 / 3}$
t	2	0	0	0	-1	1	10
p	$-3^{1 / 3}$	0	0	$13^{1 / 3}$	$33^{1 / 3}$	0	1733
$1 / 3$							

$$
\begin{aligned}
& \mathrm{R}_{1} \div 3 / 2 \\
& \mathrm{R}_{2}-1 / 2 \mathrm{R}_{1} \\
& \mathrm{R}_{3}-\text { no cha } \\
& \mathrm{R}_{4}+20 \mathrm{R}
\end{aligned}
$$

M1 A1

$$
\mathrm{R}_{3}-\text { no change } \quad \text { M1 A1 } 4
$$

(ii) not optimal, a negative value in profit row

B1ft
(iii) $x=0 \quad y=16 \frac{2}{3} \quad z=62 / 3$
$p=£ 1733.33 \quad r=0, s=0, t=10$
M1 A1ft
A1ft 4

1. (a)

	D	E	F
A	20	4	
B		26	6
C			14

(b) $\quad S_{A}=0 \quad S_{B}=-1 \quad S_{C}=7$
$D_{P}=21 \quad D_{E}=24 \quad D_{F}=18$ A1
$I_{13}=I_{A F}=16-0-18=-2$
$I_{21}=I_{B D}=18+1-21=-2$ M1
$I_{31}=I_{C D}=15-7-21=-13(*)$
A1ft
$I_{32}=I_{C E}=19-7-24=-12$ A1ft

5
(c) eg $C D(+) \rightarrow A D(-) \rightarrow A E(+) \rightarrow B E(-) \rightarrow B F(+) \rightarrow C F(-) \quad \theta=14 \mathrm{M} 1 \mathrm{~A} 1 \mathrm{ft}$

	D	E	F
A	6	18	
B		12	20
C	14		

A1ft A1
cost $£ 1384$
2. (a) Deleting F leaves r.s.t

M1
r.s.t. length $=\underline{86}$
s_{0} lower bound $=86+16+19=\underline{121}$
M1 a1 4
\therefore best L.B is 129 by deleting $C(\mathrm{ft}$ from choice)
B1 ft 1
(b) Add 33 to $B F$ and $F B$

B1
Add 31 to $D E$ and $E D$
B1 2
(c) Tour, visits each vertex, order correct using table of least distances. M1 A1 e.g. $\left.F \cdot C \begin{array}{lllllllllllll} & D & A & B & E & G & F & \text { (actual route } F & C & D & C & A & B \\ E & G & F\end{array}\right) A 1$ upper bound of 138 km

$$
\text { A1 } 4
$$

3. Let $x_{i j}$ be number of units transported from i to j
where $i \in\{W, X, Y\}$ and $j \in\{J, K, L\}$
B1 1
warehouse supermarket

4. (a) The route from start to finish in which the arc of minimum B2, 1, 0 length is as large as possible.
e.g. must be pratical, involve choice of route, have are 'cuts'.

B1 3
(b)

Stage	State	Action	Value
1	H	HK	18(*)
	I	IK	19(*)
	J	JK	21(*)
2	F	FH	$\min (16,18)=16$
		FI	$\min (23,19)=19(*)$
		FJ	$\min (17,21)=17$
	G	GH	$\min (20,18)=18$
		GI	$\min (15,19)=15$
		GJ	$\min (28,21)=21(*)$
3	B	BG	$\min (18,21)=18(*)$
	C	CF	$\min (25,19)=19(*)$
		CG	$\min (16,21)=16$
	D	DF	$\min (22,19)=19(*)$
		DG	$\left.\min (19,21)=19{ }^{*}\right)$
	E	EF	$\min (14,19)=14\left(^{*}\right)$
4	A	AB	$\min (24,18)=18$
		AC	$\min (25,19)=19(*)$
		AD	$\min (27,19)=19(*)$
		AE	$\min (23,14)=14$

M1 A1 2

M1 A1 A1 3

M1 A1ft

A1ft 3
[14]
5. (a) To maximise, subtract all entries from $n \geq 30$
e.g. $\left[\begin{array}{llll}4 & 0 & 0 & 0 \\ 0 & 7 & 4 & 1 \\ 0 & 5 & 3 & 6 \\ 0 & 3 & 5 & 9\end{array}\right]$
[minimum uncovered element is 1: so $\left[\begin{array}{llll}5 & 0 & 0 & 0 \\ 0 & 6 & 3 & 0 \\ 0 & 4 & 2 & 5 \\ 0 & 2 & 4 & 8\end{array}\right] \quad$ M1 A2ft1ft0 $\quad 3$

$\begin{array}{llr}\text { (b) } £ 1160000 & \mathrm{~B} 2,1,0 & 2 \\ \text { (c) Gives other solution } & \mathrm{M} 1 \mathrm{A1ft} & 2\end{array}$
[15]
6. (a) $S S_{1}-47, S S_{2}-87, T_{1} T-S_{1}, T_{2} T-T_{3}$ added to diagram 1 M1 A1 2

If all 4 nos. zero then M0
M1 4 arcs added correctly +4 numbers given
(diagram 1 only) condone lack of arrows
A1 c.a.o. (diagram 1 only) penalise arrow errors here
(b)

$$
\begin{array}{rllllll}
\mathrm{SS}_{1} & \rightarrow 0, \quad \mathrm{SS}_{2} & \rightarrow 38, \quad \mathrm{~T}, \mathrm{~T} & \rightarrow 8, & \mathrm{~T}_{2} \mathrm{~T} & \rightarrow 20 & \mathrm{M} 1 \mathrm{~A} 1 \\
& \leftarrow 47 & & \leftarrow 49 & \leftarrow 43 & & \leftarrow 53
\end{array}
$$

M1 4 arcs, 2 numbers and 2 arrows \longleftarrow per arc
A1 c.a.o.
(c) e.g. $\quad S \quad S_{2} A$
$\begin{array}{llllll}S & S_{2} & C & E & T_{2} & T-1\end{array}$
M1
$\begin{array}{llllll}S & S_{2} & C & E & D & T_{2} T-10\end{array}$
A4,3,2,1,0
$\begin{array}{llllllll}S & S_{2} & C & E & B & D & T_{1} & T-4\end{array}$
Maximum flow - 113
B1 6
M1 2 correct routes + flows found (flow > 10 gets M0) (condone initial f.a.
routes only if clearly repeated from
new ones)
A4 all flows + routes to 15 more or flow increased above
17 more
A2 ≥ 3 flows + routes to 11 more or
A1 at least 2 flows + routes found to 5 more
B1 113 c.a.o.
(d) e.g.

M1 consistent flow of 101(*), complete clear (doesn't need to ft from (c))
A1 correct flow of 113 including arrows
(e) Max flow - min cut theorem; cut $A T_{1}, A D, S_{1} B, S_{2} B, B C, C E$

M1 flow of $113+$ cut attempted + max flow - min cut theorem referred to (3 out of 4)
A1 c.a.o.
(f) Idea of a directed flow along arcs; from S to T; through a system/network; practical

B2 all 4 bits there
B1 2 out of 4 there
7. (a) A zero-sum game is one in which the sum of the gains for all players is zero. (o.e.)
$\begin{array}{llllll}\text { (b) } & & \text { I } & \text { II } & \text { III } & \\ & \text { I } & 5 & 2 & 3 & \min 2\end{array}$

| II | 3 | 5 | 4 | $\min 3$ |
| :--- | :--- | :--- | :--- | :--- |\leftarrow max

$\max 5 \quad 5 \quad 4$
min
Since $3 \neq 4$ not stable
(c) Let A play I with probability p

Let A play II with probability $(1-p)$
If B plays I A's gains are $5 p+3(1-p)=2 p+3$
If B plays II A's gains are $2 p+5(1-p)=5-3 p$
M1 A1 2
If B plays III A's gains are $3 p+4(1-p)=4-p$

Intersection of $2 p+3$ and $4-p \Rightarrow p=\frac{1}{3}$
M1 A1ft 2
\therefore A should play I $\frac{1}{3}$ of time and II $\frac{2}{3}$ of time; value (to A) $=3 \frac{2}{3} \mathrm{~A} 1 \mathrm{ft}$ A1ft 2
(d) Let B play I with probability q_{1},

II with probability q_{2} and III with probability q_{3}
e.g. Let $x_{1}=\frac{q_{1}}{v} \quad x_{2}=\frac{q_{2}}{v} \quad x_{3}=\frac{q_{3}}{v}$

Maximise $\mathrm{P}=x_{1}+x_{2}=x_{3}$
subject to $5 x_{1}+2 x_{2}+3 x_{3} \leq 1$
$3 x_{1}+5 x_{2}+4 x_{3} \leq 1$
A2,1,0
5
$x_{1}, x_{2}, x_{3} \geq 0$

Alt 1
e.g. $\left[\begin{array}{ll}-5 & -3 \\ -2 & -5 \\ -3 & -4\end{array}\right] \rightarrow\left[\begin{array}{ll}1 & 3 \\ 4 & 1 \\ 3 & 2\end{array}\right]$
maximise $\mathrm{P}=\mathrm{V}$
subject to $v-q_{1}-4 q_{2}-3 q_{3} \leq 0$

$$
\begin{array}{ll}
v-3 q_{1}-q_{2}-2 q_{3} \leq 0 & q_{1}+q_{2}+q_{3} \leq 1 \\
v, q_{1}, q_{2}, q_{3} \geq 0 & \text { or }=1
\end{array}
$$

8. (a) r, s and t are unused amounts of bird seed (in kg), suet blocks and peanuts (in kg) that Polly has at the end of each week after shehas made up and sold her packs

B2 Ref to "unused" "bird seed, suet blocks \& peanuts"
B1 Ref to "unused" or bird seed etc or muddled
explanation.
"bad" gets B1 must engage with context
(b)

b.v.	x	y	z	r	s	t	value	
z	$\frac{2}{5}$	$\frac{1}{2}$	1	$\frac{1}{10}$	0	0	14	$\mathrm{R}_{1} \div 10$

t		$\frac{1}{2}$	0	$-\frac{3}{10}$	0			$\mathrm{R}_{3}-3 \mathrm{R}$	A2ft, 1ft, 0	5
p	-90	-25	0	65	0	0	9100	$\mathrm{R}_{4}+65$		
	M1 correct pivot									
	A1 pivot row correct c.a.o. incl.bv									
	M1ft correct row operations used (all 3) - at least 1 non zero or 1 term correct in each row.									
	A2ft non-pivoted rows correct; -1 each error ft on error in pivot choice only. Penalise b.v once only									
(c)	$x=0 \quad y=0$		$=1$	$r=$	s	$=4$	$t=18$	$p=£ 91$	M1 A2ft, 1ft, 0	3
		$\begin{aligned} & M \\ & b . \\ & A_{1} \end{aligned}$	3 varial + neg	riables value co atives	$\begin{aligned} & \text { state } \\ & \text { umns } \\ & 10 \end{aligned}$	$\begin{aligned} & d-n \\ & \text { on } \end{aligned}$	st hav bleau.	complete		
	A1ft all 7 c.a.o. Need $£ 91 \mathrm{ft}$ but accept 9100									
	A1ft at least 4 c.a.o. (condone $P=9100 \mathrm{ft}$)									
(d)	$p-90 x-2 \sqrt{y}+65 r=9100$ (o.e.)								M1 A1ft	2
	M1ft P, (-)90x, (-)25y, 65 and 9100 (or 91) all present and one $=$ sign									
	A1ft c.a.o. (o.e.)									
(e)	$p=9100+90 x+25 y-65 r$									
	So inc	easing x		would	crea	e th	profit		B1ft	3
	B1ft stating that increasing x or y would increase profit, probably re-arranging profit equation. Generous.									
	The $\frac{2}{5}$	in the x column and $2^{\text {nd }}(s)$ row.							B2ft, 1ft, 0	2
	B2ft $\frac{2}{5}$ identified, x column and $2^{\text {nd }}$ (s) row.									
	Accept ringed in last tableau									
	B1ft "bad" gets B1, if ft their "optional" tableau B1.									

(b) Notes

1. Wrong pivot chosen in col 2 (-usually 4) M0 then for M1A2ft
(a)

b.v.	x	y	z	r	s	t	value	
r	-1	$2 \frac{1}{2}$	0	1	-2 $\frac{1}{2}$	0	-10	$\mathrm{R}_{1}-10 \mathrm{R}_{2}$
z	$\frac{1}{2}$	$\frac{1}{4}$	1	0	$\frac{1}{4}$	0	15	$\mathrm{R}_{2} \div 4$
t	$-\frac{1}{2}$	(19)	0	0	$-\frac{3}{4}$	1	15	$\mathrm{R}_{3}-3 \mathrm{R}_{2}$
p	-25	-187 $\frac{1}{2}$	0	0	$\begin{gathered} 162 \\ \frac{1}{2} \end{gathered}$	0	9750	$\mathrm{R}_{4}+650 \mathrm{R}_{2}$

(b)

b.v.	x	y	z	r	s	t	value	
r	$\frac{2}{3}$	$-1 \frac{2}{3}$	0	1	0	$\frac{-10}{3}$	-60	$\mathrm{R}_{1}-10 \mathrm{R}_{3}$
s	$\frac{2}{3}$	$-1 \frac{2}{3}$	0	0	1	$\frac{-4}{3}$	-20	$\mathrm{R}_{2}-4 \mathrm{R}_{3}$
z	$\left(\frac{1}{3}\right)$	$\frac{2}{3}$	1	0	0	$\frac{1}{3}$	20	$\mathrm{R}_{3} \div 3$
	$-133 \frac{1}{3}$	$83 \frac{1}{3}$	0	0	0	$216 \frac{2}{3}$	13000	$\mathrm{R}_{4}+650 \mathrm{R}_{3}$

2. MISREADS - use col x or col y (-2 A marks if earned)
(a)

b.v.	x	y	z	r	s	t	value	
r	0	3	2	1	-2	0	20	$\mathrm{R}_{1}-4 \mathrm{R}_{2}$
x	1	$\frac{1}{2}$	2	0	$\frac{1}{2}$	0	30	$\mathrm{R}_{2} \div 2$
t	0	$1 \frac{1}{2}$	1	0	$-\frac{1}{2}$	1	30	$\mathrm{R}_{3}-\mathrm{R}_{2}$
p	0	-175	50	0	175	0	10500	$\mathrm{R}_{4}+350 \mathrm{R}_{2}$

(b)

b.v.	x	y	z	r	s	t	value	
y	$\frac{4}{5}$	1	2	$\frac{1}{5}$	0	0	28	$\mathrm{R}_{1}-5$
s	$\left(1 \frac{1}{5}\right)$	0	2	$-\frac{1}{5}$	1	0	32	$\mathrm{R}_{2}-\mathrm{R}_{1}$
t	$-\frac{3}{5}$	0	-1	$-\frac{2}{5}$	0	1	4	$\mathrm{R}_{3}-2 \mathrm{R}_{1}$
p	-70	0	50	70	0	0	9800	$\mathrm{R}_{4}+350 \mathrm{R}_{2}$

9.

(a) SADT - 8 SCET - $11 \quad$ SBFT - 9
B2, 1, 0
(b)

(c) (i)

		M1	
		A1	2
e.g.			
S A C D T - 2	S C F T -6	A1	
S A C E F T -3	S A C F T -1	A1	3
\quad max flow 40			

(ii) eg.

M1 A1 2
(iii) Max flow - min cut theorem
cut $\mathrm{AD}, \mathrm{CD}, \mathrm{DE}, \mathrm{ET}, \mathrm{CF}, \mathrm{BC}, \mathrm{SB}$ ie $\{\mathrm{SACE}\}\{\mathrm{BDFT}\} \quad \mathrm{A} 2,0 \quad 3$
(d) Idea of a directed flow through a system of arcs from $\underline{\underline{S} \text { to } \mathrm{T}} \quad \mathrm{B} 11$ practical

1. To maximise, subtract all entries from $n \geq 278$
e.g.

$$
\left[\begin{array}{llll}
11 & 6 & 2 & 17 \\
14 & 7 & 0 & 15 \\
11 & 5 & 3 & 15 \\
17 & 9 & 4 & 21
\end{array}\right]
$$

Reduce rows

$$
\left[\begin{array}{cccc}
9 & 4 & 0 & 15 \\
14 & 7 & 0 & 15 \\
8 & 2 & 0 & 12 \\
13 & 5 & 0 & 17
\end{array}\right]
$$

Min element $=1$

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 2 \\
5 & 4 & 0 & 2 \\
0 & 0 & 1 & 0 \\
4 & 2 & 0 & 4
\end{array}\right]
$$

then columns

$$
\left[\begin{array}{llll}
1 & 2 & 0 & 3 \\
6 & 5 & 0 & 3 \\
0 & 0 & 0 & 0 \\
5 & 3 & 0 & 5
\end{array}\right]
$$

M1 A1ft A1ft 3

M1 A1ft A1 3

M1 A1ft A1ft 3

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
5 & 3 & 0 & 1 \\
1 & 0 & 2 & 0 \\
4 & 1 & 0 & 3
\end{array}\right]
$$

Min element $=1$

$\left[\begin{array}{llll}0 & 0 & 1 & 1\end{array}\right]$	So	A - H		M1	
$\begin{array}{llll}4 & 2 & 0 & 0\end{array}$		H		A1	2
$\begin{array}{llll}1 & 0 & 3 & 0\end{array}$		B - P	or		
$\begin{array}{llll}1 & 0 & 3 & 0\end{array}$		S			
$\left[\begin{array}{llll}3 & 0 & 0 & 2\end{array}\right]$		C-S			
optimal		I			
optimal		D - I			
		P			
		(both	77)		

2. e.g.

Stage	State	Action	Dest	Value
$\begin{gathered} 1 \\ \text { (Sept) } \end{gathered}$	$\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right.$	2 3 4	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} 200+200 & =400 * \\ 200+100 & =300 * \\ 200 \quad & =200 * \end{aligned}$
$\begin{gathered} 2 \\ (\text { Aug }) \end{gathered}$	12	5 4 3	2 1 0	$\begin{aligned} & 200+200+500+400=1300 \\ & 200+200+300=700 \\ & 200+200+200=600 * \end{aligned}$
	1	5	1	$\begin{aligned} & 200+100+500+300=1100 \\ & 200+100+200=500 * \end{aligned}$
	0	5	0	$200+500+200=900$ *
$\begin{gathered} 3 \\ (\mathrm{Jul}) \end{gathered}$	2	5	0	$200+200+500+900=1800$ *
$\begin{gathered} 4 \\ \text { (Jun) } \end{gathered}$	2	3	2	$200+200+1800=2200 *$
	1	4	2	$200+100+1800=2100 *$
	0	5	2	$200+500+1800=2500$ *
$\begin{gathered} 5 \\ \text { (May) } \end{gathered}$	0	5	2	$200+500+2200=2900$
	1	4	2	$200+2100=2300$ *
	0	5	2	$200+2500=2700$ *

Month	May	June	July	August	September	M1 A1ft
production schedule	4	4	5	5	4	

Cost $£ 2300$
A1ft 3
3. Let $x_{i j}$ be the number of units transported from i to j, in 1000 litres
where $\mathrm{i} \in\{\mathrm{F}, \mathrm{G}, \mathrm{H}\}$ and $j \in\{\mathrm{~S}, \mathrm{~T}, \mathrm{U}\}$
B2, 1, $0 \quad 2$
Minimise

$$
\mathrm{C}=23 x_{\mathrm{fs}}+31 x_{\mathrm{fft}}+46 x_{\mathrm{fu}}+
$$

$$
35 x_{\mathrm{gs}}+38 x_{\mathrm{gt}}+51 x_{\mathrm{gu}}+
$$

B1 2

$$
41 x_{\mathrm{hs}}+50 x_{\mathrm{ht}}+63 x_{\mathrm{hu}}
$$

Unbalanced

Subject to

$$
\begin{array}{ll}
x_{\mathrm{fs}}+x_{\mathrm{ft}}+x_{\mathrm{fu}} \leq 540 \\
x_{\mathrm{gs}}+x_{\mathrm{gt}}+x_{\mathrm{gu}} \leq 789 & \\
x_{\mathrm{hs}}+x_{\mathrm{ht}}+x_{\mathrm{hu}} \leq 673 & \\
x_{\mathrm{fs}}+x_{\mathrm{gs}}+x_{\mathrm{hs}} \leq 257 & \} \\
x_{\mathrm{ft}}+x_{\mathrm{gt}}+x_{\mathrm{ht}} \leq 348 & \} \\
x_{\mathrm{fu}}+x_{\mathrm{gu}}+x_{\mathrm{hu}} \leq 412 & \}
\end{array} \quad \text { accept }=\text { here }
$$

B1 1
Accepted introduction of a dummy demand methods.
4. (a) Adds zero for costs in third column
(b) The total supply is greater than the total demand
(c) The solution would otherwise be degenerate
(d)

		10	15	0	
		J	K	L	
0	A		8	1	
0	B			13	
-6	C	9	3		$\mathrm{I}_{\mathrm{AJ}}=12-0-10=2$
			$\mathrm{I}_{\mathrm{BJ}}=8-0-10=-2$		
				$\mathrm{I}_{\mathrm{BK}}=17-0-15=2$	
		$\mathrm{I}_{\mathrm{CL}}=0+6-0=6$			

	J	K	L
A		$8-\theta$	$1+\theta$
B	θ		$13-\theta$
C	$9-\theta$	$3+\theta$	

$$
\begin{gathered}
\theta=8 \\
\text { Entering square BJ }
\end{gathered}
$$

		8	13	0
		J	K	L
0	A			9
0	B	8		5
-4	C	1	11	

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{AJ}}=12-0-8=4 \\
& \mathrm{I}_{\mathrm{AK}}=15-0-13=2 \\
& \mathrm{I}_{\mathrm{BK}}=17-0-13=4 \\
& \mathrm{I}_{\mathrm{CL}}=0+4-0=4
\end{aligned}
$$

No negatives, so optimal
5. (a) Row minimums $\{-2,-1,-4,-2\}$ row maximum $=-1$

Column maximums $\{1,3,3,3\}$ column minimum $=1$
M1 A1

A1 3
(b) Row 2 dominates Row 3

Column 1 dominates column 4
B1
B1 2
(c) Let A play row R, with probability P_{1}, R_{2} with probability P_{2}
and " R_{3} " with probability P_{3}.
$\left(\begin{array}{ccc}-2 & 1 & 3 \\ -1 & 3 & 2 \\ 1 & -2 & -1\end{array}\right) \begin{aligned} & \text { eg } \\ & \rightarrow 3\end{aligned}\left(\begin{array}{lll}1 & 4 & 6 \\ 2 & 6 & 5 \\ 4 & 1 & 2\end{array}\right)$
e.g. maximise $\mathrm{P}=\mathrm{V}$

M1 2
B1

M1 A1
A4ft, 3ft, 2ft, 1ft, $0 \quad 6$

$$
\begin{aligned}
& \text { subject to } V-p_{1}-2 p_{2}-4 p_{3} \leq 0 \\
& \qquad V-4 p_{1}-6 p_{2}-p_{3} \leq 0 \\
& V-6 p_{1}-5 p_{2}-2 p_{3} \leq 0
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{p}_{1}+\mathrm{p}_{2}-\mathrm{p}_{3} \leq 1 \\
& \mathrm{~V}, \mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3} \geq 0
\end{aligned}
$$

OR
e.g. Let $\quad x_{i}=\frac{p_{i}}{v} \quad \therefore \quad \frac{1}{v}=x_{1}+x_{2}+x_{3}$
minimise $\mathrm{P}=x_{1}+x_{2}+x_{3}$
subject to $\quad x_{1}+2 x_{2}+4 x_{3} \geq 1$
$4 x_{1}+6 x_{2}+x_{3} \geq 1$
$6 x_{1}+5 x_{1}+2 x_{3} \geq 1$
$x_{1}+x_{2}+x_{3} \geq 0$

+ other equivalent methods.

6. (a)

R.M.S.T

e.g. $\mathrm{AH}, \mathrm{AB}, \mathrm{BD}, \mathrm{DE}$

HG, EF using prim
A1
length of R M S T $=459$
\therefore lower bound $=459+53+83=595 \mathrm{~km}$ (deleting c)
\therefore Best lower bound is 595 km , by deleting c
(b) Adds 167 to AF and FA

137 to CH and HC
B1, 3, 2, 1, $0 \quad 4$
136 to DF and FD
145 to DG and GD
(c) $\begin{array}{lllllllll}\mathrm{C} & \mathrm{D} & \mathrm{E} & \mathrm{F} & \mathrm{H} & \mathrm{A} & \mathrm{B} & \mathrm{G} & \mathrm{C}\end{array}$ M1 A1
\therefore Best upper bound is 707 starting at F
B1ft 4
7. (a) (i) A cut is a division of the vertices of a flow network into 2 sets, one containing the source(s) and the other containing the $\operatorname{sink}(\mathrm{s})$. B1
(ii) A cut whose capacity is least

B1 2
(b) $C_{1}=1038, C_{2}=673$

B1, B2, $0 \quad 3$
(c) e.g.

M1A1A1 3
$\mathrm{O}=$ saturated

- = compulsory
(d) $\mathrm{AC}, \mathrm{CD}, \mathrm{GF}, \mathrm{FT}$

B1 1
(e) DE would not allow any further flow into EF B1, 1, $0 \quad 2$

DG would cross both minimum cuts - D can take extra flow, G can accept it. Flow increased by 8.6 to $\mathbf{7 5 9}$ (accept either number)

1. (a) Any part of an optimal path is itself optimal
(b) The route chosen such that the maximum arc length is as small as possible
(c) e.g. Maximising freight by minimising fuel needed when planning multiple stage light aircraft journey

B2, 1, 0
B1 cao ("port", "section", OK; "arc", "stage", activity", "event", not)
B1 cao (not min of max rate, not minimize largest arc)
B2 cao
B1 cloze "Bod" gets B1
2. Let $\mathrm{x}_{\mathrm{ij}}=1$ if worker does task, 0 otherwise B1 where x_{ij} indicates the arc from node i to node j i.e $\mathrm{P}, \mathrm{Q}, \mathrm{R} \mathrm{j} \mathrm{E} \mathrm{1}, \mathrm{2}$,$3 \quad B1$

$$
\begin{array}{lll}
\mathrm{x}_{\mathrm{p} 1}+\mathrm{x}_{\mathrm{p} 2}+\mathrm{x}_{\mathrm{p} 3}=1 & \mathrm{x}_{\mathrm{p} 1}+\mathrm{x}_{\mathrm{q} 1}+\mathrm{x}_{\mathrm{r} 1}=1 & \mathrm{M} 1 \\
\mathrm{x}_{\mathrm{q} 1}+\mathrm{x}_{\mathrm{q} 2}+\mathrm{x}_{\mathrm{q} 3}=1 \text { and } & \mathrm{x}_{\mathrm{p} 2}+\mathrm{x}_{\mathrm{q} 2}+\mathrm{x}_{\mathrm{r} 2}=1 & \text { A1 } \\
\mathrm{x}_{\mathrm{r} 1}+\mathrm{x}_{\mathrm{r} 2}+\mathrm{x}_{\mathrm{r} 3}=1 & \mathrm{x}_{\mathrm{p} 3}+\mathrm{x}_{\mathrm{q} 3}+\mathrm{x}_{\mathrm{r} 3}=1 & \text { A1 }
\end{array}
$$

Minimise, $C=8 \mathrm{x}_{\mathrm{p} 1}+7 \mathrm{x}_{\mathrm{p} 2}+3 \mathrm{x}_{\mathrm{p} 3}+9 \mathrm{x}_{\mathrm{q} 1}+5 \mathrm{x}_{\mathrm{q} 2}+6 \mathrm{x}_{\mathrm{q} 3}+10 \mathrm{x}_{\mathrm{r} 1}+4 \mathrm{x}_{\mathrm{r} 2}+4 \mathrm{x}_{\mathrm{r} 3}$ where C is in hundreds of pounds B1, B1 2

B1 cao
B1 defining variable - attempt
M1 at least 3 equations - coefficients of one
A1 cao 3 correct
A1 cao 6 correct
B1 Minimise
B1 cao (condone a slip) (- accept cost in pounds)
3. (a) Each activity must be visited once and then we return
to the starting activity, this must be done in a minimum time B2, 1, $0 \quad 2$
B2 cao - all 3 bits in the context
B1 cloze 'Bod' is B1 (e.g. not in contect; just 'each activity once' - but not all 3; ...)
(b) $108+54+150+68+100=480$ minutes ($=8$ hours)

M1 A1 2
M1 (maybe implicit) attempting to add 5 values
A1 cao
(c) Use nearest neighbour B F T C D B

$$
\begin{align*}
& 64+68+60+54+150=396 \text { minutes }(67 \text { hours }) \tag{A1 3}\\
& \text { M1 each vertex visited once }- \text { either } N N \text { or } 2 \text { x mst-shortcut }(B D) \\
& \text { A1 cao incl return to } B(B F T C D B) \\
& \text { A1 cao }(396)
\end{align*}
$$

(d)

CT, TF, CD (Prim or Kruskal)
M1 A1
$182+64+100=346$ minutes M1 A1ft
M1 Finding correct minimum spanning tree (maybe implicit) 182
sufficient
A1 cao tree or 182
M1 adding 2 least arcs to B i.e. 100 and 64 only
A1ft cao ft from their m.s.t. value i.e. 164 and their tree length
4. (a) Adding $\mathrm{n} \geq 20$ to table to give

	H	P	R	W
A	3	5	11	9
B	3	7	8	N
C	2	5	10	7
D	8	3	7	6

Reducing rows first $\left[\begin{array}{cccc}0 & 2 & 8 & 6 \\ 0 & 4 & 5 & n-3 \\ 0 & 3 & 8 & 5 \\ 5 & 0 & 4 & 3\end{array}\right]$ then columns $\left[\begin{array}{cccc}0 & 2 & 4 & 3 \\ 0 & 4 & 1 & n-6 \\ 0 & 3 & 4 & 2 \\ -4 & -\theta--\theta & -\theta-\cdots\end{array}\right]$ M1 A13

Either

$\left[\begin{array}{cccc} 0 & 1 & 3 & 2 \\ -1 & 3 & - & -n \\ 0 & 2 & 3 & 1 \\ 6 & -7 & - \\ -6 & -\theta & -\theta & -\theta \end{array}\right]$	or	$\left[\begin{array}{cccc} 1 & 1 & 1 & \\ 0 & 1 & 0 & 2 \\ 0 & 3 & 0 & n-7 \\ 0 & 2 & 3 & 1 \\ -6 & 0 & - \\ \hdashline- & - & - & -\theta \end{array}\right]$	M1 A1ft	
\downarrow		\downarrow		
$\left[\begin{array}{cccc}0 & 0 & 2 & 1 \\ 1 & 3 & 0 & n-7 \\ 0 & 1 & 2 & 0 \\ 7 & 0 & 0 & 0\end{array}\right]$		$\left[\begin{array}{cccc}0 & 0 & 3 & 1 \\ 0 & 2 & 0 & n-8 \\ 0 & 1 & 3 & 0 \\ 7 & 0 & 1 & 0\end{array}\right]$	M1 A1ft	4

A $\quad \mathrm{H} \quad \mathrm{P}$
$\mathrm{B}-\mathrm{R}$ or R
cost $£ 21000$
C \quad - W $\quad \mathrm{H}$

D - P W
(b) Not unique - gives the other solution
.

Stage	State	Action	Value
1	H	HT	4*
	I	IT	3*
	J	JT	12*
	K	KT	20*
2	D	DH	$2+4=6$
		DI	$4+3=7 *$
	E	EH	$3+4=7 *$
		EI	$4+3=7 *$
	F	FJ	$10+12=22 *$
		FK	$-8+20=12$
	G	GJ	$10+12=22$
		GK	$17+20=37 *$
3	A	AD	$3+7=10$
		AE	$2+7=9$
		AF	$-5+22=17 *$
	B	BD	$3+7=10$
		BE	$2+7=9$
		BF	$-6+22=16 *$
	C	CF	$8+22=30 *$
		CG	$-15+37=22$
4	S	SA	$2+17=19$
		SB	$3+16=19$
		SC	$-10+30=20 *$

Route S C F J T £20 000

M1 A1 2

M1 A1

A1 3

M1 A1ft

A1 ft 3

M1 A1ft 2

M1 A1 2
6. (a) Either e.g.

In an $n \times m$ problem, a degenerate solution occurs when the number of cells used is less than ($n+m-1$)

B2,1,0 2
or e.g. when all the demand for one destination is satisfied by all the supply from a source, before the final demand and supplies are allocated

> B2 cao
> B1 cloze "bod" is B1
(b) If the total supply $>$ total demand a dummy is used to absorb the excess
(c) $\left[\begin{array}{ccc}15 & & \\ 1 & 11 & 0 \\ & & 17\end{array}\right]$ B1 cao total of five numbers
(d) Shadow costs

$$
\begin{array}{lll}
\mathrm{S}_{\mathrm{A}}=0 & \mathrm{~S}_{\mathrm{B}}=-1 & \mathrm{~S}_{\mathrm{C}}=-1 \\
\mathrm{D}_{1}=62 & \mathrm{D}_{2}=49 & \mathrm{D}_{3}=1
\end{array}
$$

Improvement indices $\mathrm{I}_{\mathrm{A} 2}=47-0-49=-2^{*}$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{A} 3}=0-0-1=-1 \\
& \mathrm{I}_{\mathrm{C} 1}=68+1-62=7 \\
& \mathrm{I}_{\mathrm{C} 2}=58+1-49=10
\end{aligned}
$$

	$1^{(2)}$	$2^{(4)}$	$3^{(1)}$
(0)	$15-\theta$	θ	
(1) B	$1+\theta$	$11-\theta$	0
(1) C			17

M1A1A1ft 3
Entering A2, exiting B2, $\theta=0$

Shadow costs			$\mathrm{S}_{\mathrm{A}}=0$	$\mathrm{S}_{\mathrm{B}}=-1$	$\mathrm{S}_{\mathrm{C}}=-1$
			$\mathrm{D}_{1}=62$	$\mathrm{D}_{2}=47$	$\mathrm{D}_{3}=1$
Improvement indices			$\mathrm{I}_{\mathrm{A} 3}=0-0-1=-1 *$		
			$\mathrm{I}_{\mathrm{B} 2}=48+1-47=2$		
			$\mathrm{I}_{\mathrm{C} 1}=68+1-62=7$		
			$\mathrm{I}_{\mathrm{C} 2}=58+1-47=12$		
	$1^{(22)}$	$2^{(4)}$	$3^{11^{1}}$		
(0) A		11	θ		
(1) B	$12+\theta$		$0-\theta$		
(-1) C			17		

M1A1A1ft 3
Entering A3, exiting B3, $\theta=0$

	$1^{(2)}$	$2^{(4)}$	$3^{(1)}$
(0)	4	11	0
(1) B	12		
(1) C			17

Shadow costs

$$
\begin{array}{lll}
\mathrm{S}_{\mathrm{A}}=0 & \mathrm{~S}_{\mathrm{B}}=-1 & \mathrm{~S}_{\mathrm{C}}=0 \\
\mathrm{D}_{1}=62 & \mathrm{D}_{2}=47 & \mathrm{D}_{3}=0
\end{array}
$$

Improvement indices $\quad \mathrm{I}_{\mathrm{B} 2}=48+1-47=2$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{B} 3}=0+1-0=1 \\
& \mathrm{I}_{\mathrm{C} 1}=68-0-62=6 \quad \mathrm{~B} 1 \\
& \mathrm{I}_{\mathrm{C} 2}=58-0-47=11
\end{aligned}
$$

\therefore Optimal
Cost 1497 units
B1 4
7. (a) e.g. Maximise $\mathrm{P}=\mathrm{V}$

B1
Subject to:

$$
\begin{aligned}
& V-5 p_{1}-3 p_{2}-6 p_{3}+r=0 \\
& V-7 p_{1}-8 p_{2}-4 p_{3}+s=0 \\
& V-2 p_{1}-4 p_{2}-9 p_{3}+t=0 \\
& p_{1}+p_{2}+p_{3}(+u)=1
\end{aligned}
$$

M1
A2,1,0

B1 5
$P_{i} \geq 0$ and r, s, t, u are stack variables all ≥ 0
B1 Maximise/minimise and consistent function
M1 constraints (condone non-negativity)

- at least one correct must be equations

A2 all correct
A1 at least two correct
B1 defining variables
(b) Not reducible and a three variable problem
B1 cao - both
(c) e.g.

$\mathrm{b} v$	V	P_{1}	P_{2}	P_{3}	r	s	t	u	value
r	$\mathbf{1}$	-5	-3	-6	1	0	0	0	0
s	1	-7	-8	-4	0	1	0	0	0
t	1	-2	-4	-9	0	0	1	0	0
u	0	1	1	1	0	0	0	1	1
P	-1	0	0	0	0	0	0	0	0

b v	V	P_{1}	P_{2}	P_{3}	r		s	t	u	value		Row ops	M1 A1
V	1	-5	-3	-6	1		0	0	0	0		$\mathrm{R}_{1} / 1 \quad \mathrm{M}$	
s	0	-2	-5	2	-1		1	0	0	0		$\mathrm{R}_{2}-\mathrm{R}_{1}$	A1
t	0	-3	-1	-3	-1		0	1	0	0		$\mathrm{R}_{3}-\mathrm{R}_{1}$	B1ft
u	0	1	1	1	0		0	0	1	1		R_{4} stet	4
P	0	-5	-3	-6	1		0	0	0	0		$\mathrm{R}_{5}+\mathrm{R}_{1}$	
b v	V	P_{1}	P_{2}		P 3	r		s	t	u	value	Row ops	
V	1	-11	-18		0	-2		3	0	0	0	$\mathrm{R}_{1}+6 \mathrm{R}_{2}$	M1 A1ft

P_{3}	0	-1	$-\frac{5}{2}$	1	$1 / 2$	$1 / 2$	0	0	0	$\mathrm{R}_{2} / 2$	A 1
t	0	0	$-\frac{17}{2}$	0	$-\frac{5}{2}$	$\frac{5}{2}$	1	0	0	$\mathrm{R}_{3}+3 \mathrm{R}_{2}$	B 1 ft
u	0	2	$\frac{7}{2}$	0	$\frac{1}{2}$	$-\frac{1}{2}$	0	1	1	$\mathrm{R}_{4}-\mathrm{R}_{2}$	4
P	0	-11	-18	0	-2	3	0	0	0	$\mathrm{R}_{5}+6 \mathrm{R}_{2}$	

8. (a) $7 x+10 y+10 z+r=3600$

$$
\begin{aligned}
& 6 x+9 y+12 z+s=3600 \\
& 2 x+3 y+4 z+t=2400 \\
& \mathrm{P}-35 x-55 y-60 z=0
\end{aligned}
$$

B2,1,0

$$
\mathrm{B} 2,0 \quad 4
$$

(b) (i)

b.v.	x	y	z	r	s	t	value	Row ops
r	2	$\frac{\mathbf{5}}{\mathbf{2}}$	0	1	$-\frac{5}{6}$	0	600	$\mathrm{R}_{1}-10 \mathrm{R}_{2}$
z	$\frac{1}{2}$	$\frac{3}{4}$	1	0	$\frac{1}{12}$	0	300	$\mathrm{R}_{2} \div 12$
t	0	0	0	0	$-\frac{1}{3}$	1	1200	$\mathrm{R}_{3}-4 \mathrm{R}_{2}$
P	-5	-10	0	0	5	0	1800	$\mathrm{R}_{4}+60 \mathrm{R}_{2}$

B1 5
(ii)

b.v.	x	y	z	r	s	t	value	Row ops
y	$\frac{4}{5}$	1	0	$\frac{2}{5}$	$-\frac{1}{3}$	0	240	$\mathrm{R}_{1} \div \frac{5}{2}$
z	$-\frac{1}{10}$	0	1	$-\frac{3}{10}$	$\frac{1}{3}$	0	120	$\mathrm{R}_{2}-\frac{3}{4} \mathrm{R}_{1}$
t	0	0	0	0	$-\frac{1}{3}$	1	1200	R_{3} stet
P	3	0	0	4	$\frac{5}{3}$	0	20400	$\mathrm{R}_{4}+10 \mathrm{R}_{1}$

9.
(a) $\mathrm{C}_{1}=103$,
$\mathrm{C}_{2}=177$,
flow $=76$

B1, B1, B1 3
(b)

M1A1 2

(c) e.g. $\mathrm{SBCDT}-6$
SBCDET-1
S B A C DET-15
Max flow is 98

B1 5
(d)

M1A1 2

(e) Maximum flow $=$ minimum cut Cut through AD, AC, BC and BE

M1
A1 2

1. (a) Adds 32 to $A B+B A(A C B)$

47 to $A E+E A(A C D E)$
B1
32 to $C E+E C(C D E)$
B1
53 to $D G+G D(D C G)$
B1 4
(b) $A \quad C \quad B \quad D \quad E \quad F \quad G \quad A$
$15+17+38+11+31+30+23=165$ miles

weight of RSMT $=110$ miles
M1

Lower bound $=110+15+23$
A1
$=148$ miles
A1ft 4

Row min
2. (a)

$$
\left[\begin{array}{ccc}
2 & -1 & 3 \\
-3 & 4 & -4
\end{array}\right] \begin{aligned}
& -1 \\
& -4
\end{aligned} \leftarrow
$$

So he'll play 2 with probability $1-p$
If Hilary plays 1 Denis wins: $2 p-3(1-p)=5 p-3$

M1 A2,1,0

If Hilary plays 3 Denis wins: $3 p-4(1-p)=7 p-4$

$5 p-3=4-5 p$
$10 p=7$
$p=\frac{7}{10}$
Denis should play 1 with probability $\frac{7}{10}$

$$
2 \text { with probability } \frac{3}{10}
$$

the value of the game is $\frac{1}{2}$
3. (a)
$\left[\begin{array}{llcc}66 & 101 & 85 & 36 \\ 66 & 98 & 74 & 38 \\ 63 & 97 & 71 & 34 \\ 67 & 102 & 78 & 35\end{array}\right]$
reducing then columns

$-\left[\begin{array}{rrrr}1 & 4 & 12 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 \\ 0 & 2 & - & 0- \\ 3 & 6 & 6 & 0 \\ 3\end{array}\right]-$
M1A1

M1A1ftA1ft

M1A1ftA1ft
(b) $66+98+71+35=270$ seconds
(c) $20 \times 98+66+71+35=2132$ seconds

M1A1ft
A1 3
4. (a)

	A	S	D	Seats
1			0	94
2			0	65
3			0	80
	18	200	21	

(b) total supply $>$ total demand
(c)(d)

	A	S	D
1	18	76	
2		65	
3		59	21

B1
M1A1ft

B1 1
$\begin{array}{ll}S(2)=-0.7 & D(S)=4.5 \\ S(3)=-0.5 & D(D)=0.5\end{array}$
$\mathrm{I}_{1 \mathrm{D}}=0-0-0.5=-0.5$ *
$\mathrm{I}_{2 \mathrm{~A}}=4.2+0.7-5=-0.1$
$\mathrm{I}_{2 \mathrm{D}}=0+0.7-0.5=0.2$
$\mathrm{I}_{3 \mathrm{~A}}=4.6+0.5-5=0.1 \quad$ A1

	A	S	D	Entering 1D		A	S	D	M1A1ft	
1	18	$76-\theta$	θ		1	18	55	21		
2		65		Exiting 3D	2		65		A1	7
3		$59+\theta$	$21-\theta$	$\theta=21$	3		80			

(e) $\begin{array}{ll}\mathrm{S}(1)=0 & \mathrm{D}(\mathrm{A})=4.9 \\ \mathrm{~S}(2)=-0.7 & \mathrm{D}(\mathrm{B})=4.5 \\ \mathrm{~S}(3)=-0.5 & \mathrm{D}(\mathrm{B})=0 \\ \mathrm{I}_{1 \mathrm{~A}}=5-0-4.9=0.1 & \mathrm{M} 1 \\ \mathrm{I}_{2 \mathrm{D}}=0+0.7-0=0.7 & \\ \mathrm{I}_{3 \mathrm{~A}}=4.6+0.5-4.9=0.2 & \\ \mathrm{I}_{3 \mathrm{D}}=0+0.5-0=0.5 & \text { A1 } \\ \text { Optimal since all II's } \geq 0 & \text { A1 } \\ \text { cost } £ 902.70 & \text { M1A1 }\end{array}$ 6
5. (a)

M1A1
A1 3
(b) $\underline{103}$

B1 1
(c) e.g. S B E G I L T - 3

M1
S B E DFKT-5
A4,3,2,1,0 5
SBEHJGDFKT-4
S B E G DFILT-9
(d) e.g.

M1A1
A1 3
Flow value $\underline{124}$ (given)
(e) Max flow = min cut
cut through AB, BD, DE, EG, HJ
M1A1 2
6. Alt 1

Game from R's point of view.

	A1	A2	A3
R_{1}	-6	3	-5
R_{2}	2	-1	-4
R_{3}	3	-2	1

		A1	A2	A3
Add 7	R_{1}	1	10	2
	R_{2}	9	6	3
	R_{3}	10	5	8

B1, B1

Let R play 1 with probability P_{1} 2 with probability P_{2} 3 with probability P_{3} B1 $\mathrm{V}=$ value of the game
Maximise $\mathrm{P}=\mathrm{V}$
Subject to $V-P_{1}-9 P_{2}-10 P_{3} \leq 0$

$$
V-10 P_{1}-6 P_{2}-5 P_{3} \leq 0
$$

$$
\mathrm{V}-2 \mathrm{P}_{1}-3 \mathrm{P}_{2}-8 \mathrm{P}_{3} \leq 0
$$

$$
\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3} \leq 1 \text { accept }=
$$

$$
\mathrm{V}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3} \geq 0
$$

Alt 2
Add 4 to all entries

	R_{1}	R_{2}	R_{3}
A1	10	2	1
A2	1	5	6
A3	9	8	3

Let R play 1 with probability P_{1} 2 with probability P_{2} 3 with probability P_{3}
let $V=$ value of game.
B1
Let $x_{1}=\frac{\mathrm{P}_{1}}{\mathrm{~V}}, x_{2}=\frac{\mathrm{P}_{2}}{\mathrm{~V}}, x_{3}=\frac{\mathrm{P}_{3}}{\mathrm{~V}}$

Subject to $10 x_{1}+2 x_{2}+x_{3} \leq 1$

$$
\begin{aligned}
& x_{1}+5 x_{2}+6 x_{3} \leq 1 \\
& 9 x_{1}+8 x_{2}+3 x_{3} \leq 1 \\
& x_{1}, x_{2}, x_{3} \geq 0 \text { accept } \mathrm{P}_{\mathrm{i}} \geq 0
\end{aligned}
$$

7. (a)

X A D HL Y (minimax = 86)

(b)

L Y (minimax $=87$)
one
8. (a) $P-2 x-4 y-3 z=0$ (o.e.)
(b) $12 x+4 y+5 z \leq 246$
$9 x+6 y+3 z \leq 153$
$5 x+2 y-2 z \leq 171$
B1
B1
B1 3
(c)

basic variable	x	y	z	r	s	t	Value
r	12	4	5	1	0	0	246
s	9	6	3	0	1	0	153
t	5	2	-2	0	0	1	171
P	-2	-4	-3	0	0	0	0

$$
\begin{aligned}
& \begin{array}{llllllll}
x & y & z & r & s & t & \text { Value } & \begin{array}{c}
\text { Row } \\
\text { operations }
\end{array}
\end{array} \\
& \text { b.v. } \\
& \begin{array}{llll}
\text { (d) } \quad P=150 & x=0 & y=1.5 & z=48 \\
r=0 & s=0 & t=264
\end{array} \\
& \text { (e) (The third constraint) } t \neq 0 \\
& \text { B1ft } 1 \\
& \text { B1 } 1 \\
& \text { (b) } c_{1}=140, c_{2}=104 \\
& \text { B1, B1 } 2 \\
& \text { (c) e.g. } \\
& \text { M1A1 } \\
& \text { A1 } \\
& \text { A1 } \\
& \text { A1 } 5 \\
& \text { (d) Max flow - min cut theorem, flow is } 104 \text {, min cut is } c_{2} \\
& \text { M1A1 } 2
\end{aligned}
$$

Solutions

1.

(a) $x=9, y=11$

B1, B1
1B1: cao (permit B1 if 2 correct answers, but transposed)
2B1: cao
(b) AC DC DT ET

B2,1,0 2
1B1: correct (condone one error - omission or extra)
2B1: all correct (no omissions or extras)
(c) 36

B1 1
1B1: cao
(d) $\mathrm{C}_{1}=49, \mathrm{C}_{2}=48, \mathrm{C}_{3}=39$

B1, B1, B1
1B1: cao
2B1: cao
3B1: cao
(e) e.g. SAECT

1B1: A correct route (flow value of 1 given)
(f) maximum flow $=$ minimum cut
cut through DT, DC, AC and AE
1M1: Must have attempted (e) and made an attempt at a cut.
1A1: cut correct - may be drawn. Refer to max flow-min cut theorem three words out of fours.
2. (a) A walk is a finite sequence of arcs such that the end vertex
of one arc is the start vertex of the next.
B2,1,0 2
1B1: Probably one of the two below but accept correct relevant statement- bod gets B1, generous.
2B1: A good clear complete answer: End vertex = start vertex + finite.
(b) A tour is a walk that visits every vertex, returning to its stating vertex.
1B1: Probably one of the two below but accept correct relevant statement- bod gets B1, generous.
2B1: A good clear complete answer: Every vertex + return to start.

From the D1 and D2 glossaries

D1
A path is a finite sequence of edges, such that the end vertex of one edge in the sequence is the start vertex of the next, and in which no vertex appears more than once.
A cycle (circuit) is a closed path, ie the end vertex of the last edge is the start vertex of the first edge.
D2
A walk in a network is a finite sequence of edges such that the end vertex of one edge is the start vertex of the next.
A walk which visits every vertex, returning to its starting vertex, is called a tour.
3. (a) Total supply $>$ total demand
(b) Adds 0, 0 and 5 to the dummy column

B2,1,0

	L	E	D
A	35	20	
B		40	5

(d)

	80		70	20
		L	E	D
0	A	35	20	
-20	B		40	5

$\mathrm{I}_{\mathrm{AD}}=0-0-20=-20$
$\mathrm{I}_{\mathrm{BL}}=60+20-80=0$

	L	E	D
A	35	$20-\theta$	θ
B		$40+\theta$	$5-\theta$

$\theta=5$; entering square is AD ; exiting square is BD
(e) Cost is (£) 6100

B1
4. (a) Maximin : we seek a route where the shortest arc used is a great as possible.
Minimax : we seek a route where the longest arc used is a small as possible.

		80	70	0
0		L	E	D
-20	A	35	15	5
B		45		

$\mathrm{I}_{\mathrm{BL}}=60+20-80=0$
$\mathrm{I}_{\mathrm{BD}}=0+20-0=20$
(b)

Stage	State	Action	Dest.	Value
	G	GR	R	132^{*}
1	H	HR	R	175^{*}
	I	IR	R	139^{*}
	D	DG	G	$\min (175,132)=132$
		DH	H	$\min (160,175)=160^{*}$
2	E	EG	G	$\min (162,132)=132$
		EH	H	$\min (144,175)=144^{*}$
		EI	I	$\min (102,139)=102$
	F	FH	H	$\min (145,175)=145^{*}$
		FI	I	$\min (210,139)=139$
	A	AD	D	$\min (185,160)=160^{*}$
		AE	E	$\min (279,144)=144$
3	B	BD	D	$\min (119,160)=119$
		BE	E	$\min (250,144)=144^{*}$
		BF	F	$\min (123,145)=123$
	C	CE	E	$\min (240,144)=144$
		CF	F	$\min (170,145)=145^{*}$
	L	LA	A	$\min (155,160)=155^{*}$
4		LB	B	$\min (190,144)=144$
		LC	C	$\min (148,145)=145$

5. (a) For each row the element in column x must be less than the element in column y.
(b) Row minimum $\{2,4,3\}$ row maximin $=4$

Column maximum $\{6,5,6\}$ column minimax $=5$
$4 \neq 5$ so not stable
A1
(c) Row 3 dominates row 1, so matrix reduces to

	M1	M2	M3
L2	4	5	6
L3	6	4	3

Let Liz play 2 with probability p and 3 with probability ($1-p$)
If Mark plays 1 : Liz's gain is $4 p+6(1-p)=6-2 p$
If Mark plays 2: Liz's gain is $5 p+4(1-p)=4+p$
M1
If Mark plays 3: Liz's gain is $6 p+3(1-p)=3+3 p$
A1 3

B2,1,0
2
$4+p=6-2 p$ M1A1
$p=\frac{2}{3}$
(d) Liz should play row 1 - never, row $2-\frac{2}{3}$ of the time,
row $3-\frac{1}{3}$ of the time
and the value of the game is $4 \frac{2}{3}$ to her.
Row 3 no longer dominates row 1 and so row 1 can not be deleted.
Use Simplex (linear programming).
6. (a) Since maximising, subtract all elements from some $\mathrm{n} \geq 53$

$$
\left[\begin{array}{cccc}
5 & 4 & 11 & 11 \\
0 & 4 & 2 & 3 \\
2 & 0 & 5 & 5 \\
6 & 3 & 7 & 10
\end{array}\right]
$$

M1A1 2

Reduce rows $\left[\begin{array}{llll}1 & 0 & 7 & 7 \\ 0 & 4 & 2 & 3 \\ 2 & 0 & 5 & 5 \\ 3 & 0 & 4 & 7\end{array}\right]$ then columns $\left[\begin{array}{llll}1 & 0 & 5 & 4 \\ 0 & 4 & 0 & 0 \\ 2 & 0 & 3 & 2 \\ 3 & 0 & 2 & 4\end{array}\right]$

M1A1ft 2

Minimum element 1
M1

A1ft

$$
\left[\begin{array}{llll}
0 & 0 & 4 & 3 \\
0 & 5 & 0 & 0 \\
1 & 0 & 2 & 1 \\
2 & 0 & 1 & 3
\end{array}\right]
$$

A1ft 3

M1

A1ftA1ft 3
(b)

$$
\left[\begin{array}{llll}
0 & 1 & 4 & 3 \tag{M1A1ft 2}\\
0 & 6 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 2
\end{array}\right] \quad\left[\begin{array}{llll}
0 & 0 & 3 & 2 \\
1 & 6 & 0 & 0 \\
1 & 0 & 1 & 0 \\
2 & 0 & 0 & 2
\end{array}\right]
$$

M1A1
2

Joe	A	A
Min-Seong	C	D
Olivia	D	B
Robert	B	C

Value $£ 197000$
7. (a) $\mathrm{GH}(38) \mathrm{GF}(56) \mathrm{CA}(57) \mathrm{EC}(59) \mathrm{FE}(61) \mathrm{CD}(64) \mathrm{CB}(68)$
(b) $2 \times 403=806(\mathrm{~km})$

B1 1
(c) e.g. DH saves 167

M1A1
AB saves 23
$806-190=616(\mathrm{~km})$
A1

(d) eg A B C E F G H D C A

B \quad C \quad A \quad E \quad F \quad G \quad H \quad D \quad B $68+57+98+61+56+38+111+108=597(\mathrm{~km}) \quad$ A1 3
(e) Delete C

M1A1M1A1ft 4
(f) \quad RMST weight $=444$

Lower bound $=444+59+57=560(\mathrm{~km})$
$560<$ length ≤ 597
B2,1,0 2
8. (a)

b.v.	x	y	z	R	s	t	Value
r	4	$\frac{7}{3}$	$\frac{5}{2}$	1	0	0	64
s	1	3	0	0	1	0	16
t	4	2	2	0	0	1	60
P	-5	$-\frac{7}{2}$	-4	0	0	0	0

b.v.	x	y	z	R	s	t	Value	Row ops
r	0	$\frac{1}{3}$	$\frac{1}{2}$	1	0	-1	4	$\mathrm{R}_{1}-4 \mathrm{R}_{3}$
s	0	$\frac{5}{2}$	$-\frac{1}{2}$	0	1	$-\frac{1}{4}$	1	$\mathrm{R}_{2}-\mathrm{R}_{3}$
x	1	$\frac{1}{2}$	$\frac{1}{2}$	0	0	$\frac{1}{4}$	15	$\mathrm{R}_{3} \div 4$
P	0	-1	$-\frac{3}{2}$	0	0	$\frac{5}{4}$	75	$\mathrm{R}_{4}+5 \mathrm{R}_{3}$

M1A1

M1A1ftA1

b.v.	x	y	z	R	s	t	Value	Row ops							
z	0	$\frac{2}{3}$	1	2	0	-2	8	$\mathrm{R}_{1} \div \frac{1}{2}$	$	$	s	0	$\frac{17}{6}$	0	1
:---:	:---:	:---:	:---:	:---:											
1	$-\frac{5}{4}$	5	$\mathrm{R}_{2}+\frac{1}{2}$ R_{1}												
x	1	$\frac{1}{6}$	0	-1											
0	$\frac{5}{4}$	11	$\mathrm{R}_{3}-\frac{1}{2}$ R_{1}												
P	0	0	0	3											
0	$-\frac{7}{4}$	87	$\mathrm{R}_{4}+\frac{3}{2}$ R_{1}												

M1A1ft M1A1 9
(b) There is still negative numbers in the profit row.

B1 1

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6690/ 01)

6690 Decision Mathematics D2

Mark Scheme

edexcel

edexcel

Question Number	Scheme	Marks
(a) (b)	Value of cut $C_{1}=34 ;$ Value of cut $C_{2}=45$ S B F GT or S B FET - value 2 Maximum flow $=28$ Notes: (a) 1B1: cao 2B1: cao (b) 1M1: feasible flow-augmenting route and a value stated 1A1: a correct flow-augmenting route and value 1A1 = B1: cao	B1; B1 (2) M1 A1 A1 $=B 1$ (3) [5]
(a) (b)	$\begin{aligned} & x=0, y=0, z=2 \\ & P-2 x-4 y+\frac{5}{4} r=10 \end{aligned}$ Notes: (a) 1B1: Any 2 out of 3 values correct 2B1: All 3 values correct. (b) 1M1: One equal sign, modulus of coefficients correct. All the right ingredients. 1A1: cao - condone terms of zero coefficient	B2,1,0 (2) M1 A1 (2) [4]

edexcel

Question Number	Scheme				
Q7 (a)					
	Stage	State (in £1000s)	Action (in £1000s)	$\begin{gathered} \text { Dest. } \\ \text { (in } £ 1000 \text { s) } \end{gathered}$	$\begin{gathered} \text { Value } \\ \text { (in } £ 1000 \text { s) } \end{gathered}$
		250	250	0	300*
	1	200	200	0	240*
		150	150	0	180*
		100	100	0	120*
		50	50	0	60*
		0	0	0	0*
		250	280	0	$200+0=280$
			200	50	$235+60=295$
			150	100	$190+120=310 *$
			100	150	$125+180=305$
			50	200	$65+240=305$
			0	250	$0+300=300$
	2	200	200	0	$235+0=235$
			150	50	$190+60=250^{*}$
			100	100	$125+120=245$
			50	150	$65+180=245$
			0	200	$0+240=240$
		150	150	0	$190+0=190 *$
			100	50	$125+60=185$
			50	100	$65+120=185$
			0	150	$0+180=180$
		100	100	0	$125+0=125^{*}$
			50	50	$65+60=125^{*}$
			0	100	$0+120=120$
		50	50	0	$65+0=65 *$
			0	50	$0+60=60$
		0	0	0	$0+0=0 *$
	3	250	250	0	$300+0=300$
			200	50	$230+65=295$
			150	100	$170+125=295$
			100	150	$110+190=300$
			50	200	$55+250=305$
			0	250	$0+310=310^{*}$

1M1 A1

A1

2M1
A1

A1

3M1
Alft

B1
B1
(10)
(3)
[13]

Question Number	Scheme	Marks
Q8	E.g. Add 6 to make all elements positive $\left[\begin{array}{ccc}4 & 14 & 5 \\ 13 & 10 & 3 \\ 7 & 1 & 10\end{array}\right]$ Let Laura play 1, 2 and 3 with probabilities $\mathrm{p}_{1}, \mathrm{p}_{2}$ and p_{3} respectively Let $V=$ value of game +6 e.g. Maximise $\mathrm{P}=\mathrm{V}$ Subject to: $\begin{aligned} V-4 p_{1}-13 p_{2}-7 p_{3} & \leq 0 \\ V-14 p_{1}-10 p_{2}-p_{3} & \leq 0 \\ V-5 p_{1}-3 p_{2}-10 p_{3} & \leq 0 \\ p_{1}+p_{2}+p_{3} & \leq 1 \\ p_{1}, p_{2}, p_{3} & \geq 0 \end{aligned}$ Notes: 1B1: Making all elements positive 2B1: Defining variables 3B1: Objective, cao word and function 1M1: At least one constraint in terms of their variables, must be going down columns. Accept $=$ here. 1A1ft: ft their table. One constraint in V correct. 2A1ft: ft their table. Two constraints in V correct. 3A1: CAO all correct . Alt using X_{i} method Now additionally need: let $x_{i}=\frac{p_{i}}{v}$ for 2B1 $\begin{aligned} & \operatorname{minimise}(P)=x_{1}+x_{2}+x_{3}=\frac{1}{v} \\ & \text { subject to: } \\ & 4 x_{1}+13 x_{2}+7 x_{3} \geq 1 \\ & 14 x_{1}+10 x_{2}+x_{3} \geq 1 \\ & 5 x_{1}+3 x_{2}+10 x_{3} \geq 1 \\ & x_{i} \geq 0 \end{aligned}$	B1 B1 B1 M1 A3, 2ft, 1 ft , 0 (7)

Mark Scheme (Results) Summer 2010

GCE

GCE Decision Mathematics D2 (6690/ 01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

Summer 2010
Publications Code UA023714
All the material in this publication is copyright
© Edexcel Ltd 2010

Summer 2010

Decision Mathematics D2 6690
Mark Scheme

Question Number	Scheme	Marks
Q1 $\begin{aligned} & \text { (a) } \\ & \\ & \\ & \text { (b) } \\ & \\ & \text { (c) } \\ & \\ & \\ & \\ & \text { (d) } \\ & \text { (e) }\end{aligned}$	$\mathrm{A}_{\bullet} \quad 18 \longrightarrow \mathrm{C}$	
		M1 A1
		(2)
	Minimum Spanning tree length 93, so upper bound is £186	B1ft (1)
	A C F E B D A	M1
	182413202228 Length 125	A1
	A C F E D B A 182413202236 Length 133	A1 (3)
	Best upper bound is $£ 125$	B1ft (1)
	Delete A	
		M1 A1
	$\text { RMST weight }=77$	M1 A1 (4)
		[11]

edexcel

Notes for Question 1

(a) 1M1: Spanning tree found. Allow $1 \times 2 \times 43$ across top of table or 93

1A1: CAO must see tree or list of arcs
(b) 1B1ft: 186 their $\mathrm{ft} 93 \times 2$
(c) 1M1: One Nearest Neighbour each vertex visited at least once (condone lack of return to start)
1A1: One correct route and length CAO - must return to start.
2A1: Second correct route and length CAO - must return to start.
(d) 1B1ft: ft but only on three different values.
(e) 1M1: Finding correct RMST (maybe implicit) 77 sufficient, or correct numbers. 4 arcs. 1A1: CAO tree or 77.
2M1: Adding 2 least arcs to $\mathrm{A}, 18$ and 22 or 40 only
2A1: CAO 117

Notes for Question 2

(a) 1M1: Subtracting from some $n \geq 27$, condone up to two errors

2M1: Dealing with (Jess, 4) entry.
3M1: Reducing rows then columns
1A1: cao (pick up ($\mathrm{J}, 4$) value here)
4M1: Double covered +e ; one uncovered -e ; and one single covered unchanged. 2 lines needed to 3 lines needed.
2A1ft: ft correct - no errors
5M1: Double covered $+e$; one uncovered -e ; and one single covered unchanged. 3 line to 4 line solution.
3A1: correct - no errors
(b) 1M1: A complete, correct solution.

1A1: cao

Q2 Special case (Minimises)

$\left[\begin{array}{llll}18 & 24 & 22 & 17 \\ 20 & 25 & 19 & 60 \\ 25 & 24 & 27 & 22 \\ 19 & 26 & 23 & 14\end{array}\right] \xrightarrow{\text { rowreduction }}\left[\begin{array}{cccc}1 & 7 & 5 & 0 \\ 1 & 6 & 0 & 41 \\ 3 & 2 & 5 & 0 \\ 5 & 12 & 9 & 0\end{array}\right]$

M0
M1
$\xrightarrow{\text { column reductions }}\left[\begin{array}{cccc}0 * & 5 & 5 & 0 \\ 0 & 4 & 0 * & 41 \\ 2 & 0^{*} & 5 & 0 \\ 4 & 10 & 9 & 0 *\end{array}\right]$ A1

M0
M0

Solution:
Harry - 1
M1
Jess - 3
Louis -2
Saul -4
Total $£ 75$
A1

Notes for Question 3

(a) 1B1: Cao
(b) 1M1: 6 shadow costs and precisely 3 improvement indices stated. (no extra zeros) 1A1: cao.
2M1: A valid route, negative II chosen, only one empty square used, θ 's balance. 2A1ft: improved solution (no extra zeros)
3M1ft: 6 shadow costs and precisely 3 improvement indices stated (no extra zeros) 3A1: cao.
4M1ft:A valid route, negative II chosen, only one empty square used, θ 's balance. 4A1ft: improved solution (no extra zeros)
5A1=5M1: 6 shadow costs and precisely 3 improvement indices, (or 1 negative improvement index), stated (no extra zeros).
(c) $1 \mathrm{~B} 1 \mathrm{ft}=1 \mathrm{~A} 1 \mathrm{ft}$: cao for conclusion, but must follow from at least one negative in a third 'set' of IIs.

Misreads for Q3b Not choosing most negative.

	A	B	C	D
X	18	31	4	
Y			18	29

		28	20	$19 \quad 22$	
				C	D
0	X	x	x	x	-6
-5	Y	-8	-3	x	x

Candidates can get

2M1 2A1 for first route and the improved solution
3M1 3A0 - 6 shadow costs and 3 IIs
4M1 for finding a valid route and 4A1 if their route leads to an improved solution [A0 -6 shadow costs and 3 IIs but it is CAO]

Notes for Question 4

Throughout section (a):

- Condone lack of destination column and/or reversed stage numbers throughout.
- Only penalise incorrect result in Value - ie ignore working values.
- Penalise absence of state or action column with first two A marks earned only
- Penalise empty/errors in stage column with first A mark earned only.
(a) 1M1: First, T, stage complete and working backwards.

1A1: CAO (condone lack of *)
2M1: Second stage completed. Penalise reversed states here and in (b). Bod if something in each column.
2A1: Any 2 states correct. Penalise * errors, with an A mark, only once in the question).
3A1: All 3 states correct. (Penalise * errors only once in the question).
3M1: $3^{\text {rd }}$ and $4^{\text {th }}$ stages completed. Bod if something in each column.
4A1ft: Any 2 states correct. (Penalise * errors only once in the question). A, B or C
5A1ft: All 3 states correct. (Penalise * errors only once in the question). A, B and C.
6A1ft: Final, S, state correct. (Penalise * errors only once in the question).
(b) 1M1: Route (S to T or vv.) and cost stated

1A1ft: CAO (Penalise reversed states here)
(c) 1M1: Sum of four arcs $/ 4$ (do not isw here if they 'add' to this method) 1A1: CAO (32 500 gets both marks)

Special cases (and misreads)

SC1 Maximin: treat as misread.
MAX 11/13

SC2 Maximum: 1M1,1A1; 2M0; 3M1,4A1ft,5A0,6A1ft, M1A1ft M1A1ft MAX 9/13

SC3 Minimum: Marks awarded as above SC2

SC4 Maximax: 1M1,1A1; 2M0; 3M1,4A0,5A0,6A0,M1A1ft M1A1ft
MAX 7/13

SC5 Minimin: Marks awarded as above SC4

SC6 Working forwards:
1M1,1A0; 2M0; 3M1,4A0,5A0,6A0,M1A1ft M1A1ft
MAX6/13

Anything else annotate and send to review.

Q4 Misreads

SC 1 Maximin

Stage	State	Action	Dest	Value
1	G	GT	T	17^{*}
	H	HT	T	21^{*}
	I	IT	T	29^{*}
2	D	DG	G	$\min (22,17)=17$
		DH	H	$\min (31,21)=21^{*}$
	E	EH	H	$\min (34,21)=21$
		EI	I	$\min (39,29)=29^{*}$
	F	FI	I	$\min (52,29)=29^{*}$
3	A	AD	D	$\min (41,21)=21$
		AE	E	$\min (38,29)=29^{*}$
	B	BE	E	$\min (44,29)=29^{*}$
	C	CE	E	$\min (36,29)=29^{*}$
		CF	F	$\min (35,29)=29^{*}$
4	S	SA	A	$\min (37,29)=29^{*}$
		SB	B	$\min (39,29)=29^{*}$
		SC	C	$\min (41,29)=29^{*}$

SC 2 Maximum route

Stage	State	Action	Dest	Value
1	G	GT	T	17^{*}
	H	HT	T	21^{*}
	I	IT	T	29^{*}
2	D	DG	G	$22+17=39$
		DH	H	$31+21=52^{*}$
	E	EH	H	$34+21=55$
		EI	I	$39+29=68^{*}$
	F	FI	I	$52+29=81^{*}$
3	A	AD	D	$41+52=93$
		AE	E	$38+68=106^{*}$
	B	BE	E	$44+68=112^{*}$
	C	CE	E	$36+68=104$
		CF	F	$35+81=116^{*}$
4	S	SA	A	$37+106=143$
		SB	B	$39+112=151$
		SC	C	$41+116=157^{*}$

Route: SCFIT

SC3 Minimum route

Stage	State	Action	Dest	Value
1	G	GT	T	17^{*}
	H	HT	T	21^{*}
	I	IT	T	29^{*}
2	D	DG	G	$22+17=39^{*}$
		DH	H	$31+21=52$
	E	EH	H	$34+21=55^{*}$
		EI	I	$39+29=68$
	F	FI	I	$52+29=81^{*}$
3	A	AD	D	$41+39=80^{*}$
		AE	E	$38+55=93$
	B	BE	E	$44+55=99^{*}$
	C	CE	E	$36+55=91^{*}$
		CF	F	$35+81=116$
4	S	SA	A	$37+80=117^{*}$
		SB	B	$39+99=138$
		SC	C	$41+91=132$

Route: SADGT

SC 4 Maximax route

Stage	State	Action	Dest.	Value
	G	GT	T	17^{*}
1	H	HT	T	21^{*}
	I	IT	T	29^{*}
2	D	DG	G	$\max (22,17)=22$
		DH	H	$\max (31,21)=31^{*}$
	E	EH	H	$\max (34,21)=34$
		EI	I	$\max (39,29)=39^{*}$
	F	FI	I	$\max (52,29)=52^{*}$
3	A	AD	D	$\max (41,31)=41$
		AE	E	$\max (38,39)=39^{*}$
	B	BE	E	$\max (44,39)=44^{*}$
	C	CE	E	$\max (36,39)=39$
		CF	F	$\max (35,52)=52^{*}$
4	S	SA	A	$\max (37,39)=39$
		SB	B	$\max (39,44)=44$
		SC	C	$\max (41,52)=52^{*}$

Route SCFIT

SC 5 Minimin

Stage	State	Action	Dest	Value
1	G	GT	T	17^{*}
	H	HT	T	21^{*}
	I	IT	T	29^{*}
2	D	DG	G	$\min (22,17)=17^{*}$
		DH	H	$\min (31,21)=21$
	E	EH	H	$\min (34,21)=21^{*}$
		EI	I	$\min (39,29)=29$
	F	FI	I	$\min (52,29)=29^{*}$
3	A	AD	D	$\min (41,17)=17^{*}$
		AE	E	$\min (38,21)=21$
	B	BE	E	$\min (44,21)=21^{*}$
	C	CE	E	$\min (36,21)=21^{*}$
		CF	F	$\min (35,29)=29$
4	S	SA	A	$\min (37,17)=17^{*}$
		SB	B	$\min (39,21)=21$
		SC	C	$\min (41,21)=21$

Route SADGT
SC 6 Working forwards S to T

Stage	State	Action	Dest	Value
1	A	AS	S	37^{*}
	B	BS	S	39^{*}
	C	CS	S	41^{*}
	D	DA	A	$\max (41,37)=41^{*}$
	E	EA	A	$\max (38,37)=38^{*}$
		EB	B	$\max (44,39)=44$
		EC	C	$\max (36,41)=41$
	F	FC	C	$\max (35,41)=41^{*}$
3	G	GD	D	$\max (22,41)=41^{*}$
	H	HD	D	$\max (31,41)=41$
		HE	E	$\max (34,38)=38^{*}$
	I	IE	E	$\max (39,38)=39^{*}$
		IF	F	$\max (52,41)=52$
4	T	TG	G	$\max (17,41)=41$
		TH	H	$\max (21,38)=38^{*}$
		TI	I	$\max (29,39)=39$

Route SAEHT

Q6b Misreads Alternative 1
Increasing x first,

b.v.	x	y	Z	r	s	t	value	row ops
r	0	1	2	1	0	0	24	R_{1} no change
x	1	$\frac{1}{2}$	2	0	$\frac{1}{2}$	0	14	$R_{2} \div 2$
t	0	1	5	0	$\frac{1}{2}$	1	36	$R_{3}+R_{2}$
P	0	$-\frac{3}{2}$	-4	0	$\frac{1}{2}$	0	14	$R_{4}+R_{2}$

then y next

b.v.	x	y	z	r	s	t	value	row ops
y	0	1	2	1	0	0	24	$R_{1} \div 1$
x	1	0	1	$-\frac{1}{2}$	$\frac{1}{2}$	0	2	$R_{2}-\frac{1}{2} R_{1}$
t	0	0	3	-1	$\frac{1}{2}$	1	12	$R_{3}-R_{1}$
P	0	0	-1	$\frac{3}{2}$	$\frac{1}{2}$	1	50	$R_{4}+\frac{3}{2} R_{1}$

then z.

b.v.	x	y	z	r	s	t	value	row ops
y	-2	1	0	2	-1	0	20	$R_{1}-2 R_{2}$
z	1	0	1	$-\frac{1}{2}$	$\frac{1}{2}$	0	2	$R_{2} \div 2$
t	-3	0	0	$\frac{1}{2}$	-1	1	6	$R_{3}-3 R_{2}$
P	0	0	0	1	1	1	52	$R_{4}+R_{2}$

Increasing x first

b.v.	x	y	Z	r	s	t	value	row ops
r	0	1	2	1	0	0	24	R_{1} no change
x	1	$\frac{1}{2}$	2	0	$\frac{1}{2}$	0	14	$R_{2} \div 2$
t	0	1	5	0	$\frac{1}{2}$	1	36	$R_{3}+R_{2}$
P	0	$-\frac{3}{2}$	-4	0	$\frac{1}{2}$	0	14	$R_{4}+R_{2}$

Increasing z next

b.v.	X	y	Z	r	s	t	value	row ops
r	-1	$\frac{1}{2}$	0	1	$-\frac{1}{2}$	0	10	$R_{1}-2 R_{2}$
Z	$\frac{1}{2}$	$\frac{1}{4}$	1	0	$\frac{1}{4}$	0	7	$R_{2} \div 2$
t	$-\frac{5}{2}$	$-\frac{1}{4}$	0	0	$\frac{3}{4}$	1	1	$R_{3}-5 R_{2}$
P	2	$-\frac{1}{2}$	0	0	$\frac{3}{2}$	0	42	$R_{4}+4 R_{2}$

then increasing y

b.v.	x	y	z	r	s	t	value	row ops
y	-2	1	0	2	-1	0	20	$R_{1} \div \frac{1}{2}$
z	1	0	1	$-\frac{1}{2}$	$\frac{1}{2}$	0	2	$R_{2}-\frac{1}{4} R_{1}$
t	-3	0	0	$\frac{1}{2}$	-1	1	6	$R_{3}+\frac{1}{4} R_{1}$
P	1	0	0	1	1	0	52	$R_{4}+\frac{1}{2} R_{1}$

Q6b Misreads Alternative 3
Increasing y first

b.v.	x	y	z	r	s	t	value	row ops
y	0	1	2	1	0	0	24	$R_{1} \div 1$
s	2	0	2	-1	1	0	4	$R_{2}-R_{1}$
t	-1	0	2	$-\frac{1}{2}$	0	1	10	$R_{3}-\frac{1}{2} R_{1}$
P	-1	0	-2	2	0	0	48	$R_{4}+2 R_{1}$

Increasing x next

b.v.	x	y	Z	r	s	t	value	row ops
y	0	1	2	1	0	0	24	R_{1} no changw
x	1	0	1	$-\frac{1}{2}$	$\frac{1}{2}$	0	2	$R_{2} \div 2$
t	0	0	3	-1	$\frac{1}{2}$	1	12	$R_{3}-3 R_{2}$
P	0	0	-1	$\frac{3}{2}$	$\frac{1}{2}$	0	50	$R_{4}+R_{2}$

then increasing z

b.v.	x	y	Z	r	s	t	value	row ops
y	-2	1	0	2	-1	0	20	$R_{1}-2 R_{2}$
Z	1	0	1	$-\frac{1}{2}$	$\frac{1}{2}$	0	2	$R_{2} \div 1$
t	-3	0	0	$\frac{1}{2}$	-1	1	6	$R_{3}+R_{2}$
P	1	0	0	1	1	0	52	$R_{4}+R_{2}$

Q6b Misreads Alternative 4

Increasing y first

b.v.	x	y	z	r	s	t	value	row ops
y	0	1	2	1	0	0	24	$R_{1} \div 1$
s	2	0	2	-1	1	0	4	$R_{2}-R_{1}$
t	-1	0	2	$-\frac{1}{2}$	0	1	10	$R_{3}-\frac{1}{2} R_{1}$
P	-1	0	-2	2	0	0	48	$R_{4}+2 R_{1}$

Increasing z next

b.v.	x	y	z	r	s	t	value	row ops
y	-2	1	0	2	-1	0	20	$R_{1}-2 R_{2}$
z	1	0	1	$-\frac{1}{2}$	$\frac{1}{2}$	0	2	$R_{2} \div 2$
t	-3	0	0	$\frac{1}{2}$	-1	1	6	$R_{3}-2 R_{2}$
P	1	0	0	1	1	0	52	$R_{4}+2 R_{2}$

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481

Email publications@linneydirect.com
Order Code UA023714 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results)
June 2011

GCE Decision D2 (6690) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 08445760025 or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UA027672
All the material in this publication is copyright
© Edexcel Ltd 2011
advancing learning, changing lives

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol wifl be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

Question Number	Scheme	Marks
(a)	1M1: One equal sign, P and 320 $\frac{\text { Notes: }}{\text { present }}$ 1A1: cao	1M1: correct pivot located, attempt to divide row. If choosing negative pivot M0M0 in (b) 1A1: pivot row correct including change of b.v. 2M1: (ft) Correct row operations used at least once or stated correctly. 2A1ft: Looking at non zero-and-one columns, one column ft correct 3A1: cao. (c)

Question Number	Scheme	Marks
4. (a)	S plays 1 S plays 2 S plays 3 L plays 1 -4 -1 1 L plays 2 3 -1 -2 L plays 3 -3 0 2 Row 3 dominates row 1 so row 1 may be deleted. Let Laura play 2 with probability p and 3 with probability (1- p) If Sam plays 1: Laura's gain is $3 p-3(1-p)=-3+6 p$ If Sam plays 2: Laura's gain is $-p+0(1-p)=-p$ If Sam plays 3: Laura's gain is $-2 p+2(1-p)=2-4 p$	M1 M1 A1 (3)
(b)		B2,1ft,0 (2)
(c)	$\begin{aligned} & -3+6 p=-p \\ & 7 p=3 \\ & p=\frac{3}{7} \end{aligned}$ Laura should play row 1: never, row 2: $\frac{3}{7}$ of the time and row 3 : $\frac{4}{7}$ of the time and the value of the game is $-\frac{3}{7}$ to her.	M1 A1 A1ft A1 (4) 9

Question Number	Scheme	Marks
(a) (b) (c)	Notes: 1M1: Matrix reduced correctly. Could be implicit from equations. 2M1: Setting up three probability equations, implicit definition of p. 1A1: CAO 1B1ft: At least two lines correct, accept $p>1$ or $p<0$ here. Must both be function of p. 2B1: 3 lines cao, $0 \leq p \leq 1$, scale clear (or 1 line $=1$), condone lack of labels. Rulers used. 3M1: Finding their correct optimal point, must have three lines, and setting up an equation to find $0 \leq p \leq 1$. 1A1: CAO 2A1ft: All three options listed must ft from their p, check page 1, no negatives. 3A1: CAO	

Question Number	Scheme	Marks
5. (a)	$a=1 \quad b=5 \quad c=13 \quad$ Flow $=49$	$\begin{aligned} & \mathrm{B} 1, \mathrm{~B} 1 \\ & \mathrm{~B} 1, \mathrm{~B} 1 \end{aligned}$ (4)
(b)		M1 A1 (2)
(c)	e.g. SBEHT -7 together with either SBEHDAFGT -2 or SBCEHDAFGT - 2	$\begin{array}{\|l\|} \hline \text { M1 A1 } \\ \text { A2,1,0 } \end{array}$ (4)
(d)	58	B1 (1)
(e)	e.g.	M1 A1 (2)
(f)	$\begin{aligned} & \text { Max flow = min cut } \\ & \text { Cut through HT, HG, GF, FT } \quad \text { Value } 58 \end{aligned}$	M1 A1 (2) 15

Question Number	Scheme	Marks
(a)	 1B1: $a=1$ cao 2B1: $b=5$ cao 3B1: $c=13$ cao 4B1: 49 cao Notes: 1B1: \quad a $=1$ cao 2B1: b=5 cao 3B1: c = 13 cao 4B1: 49 cao	
(b)	1M1: Two numbers on each arc 1A1: cao	
(c)	1M1: One valid flow augmenting route found and value stated. 1A1: Flow increased by at least 2 2A1: A second correct flow 3A1: Flow increased by 9 and no more	
(d)	1B1: cao	
(e)	1M1: Consistent flow pattern > 51 1A1: cao	
(f)	1M1: Must have attempted (e), S to T, and made an attempt at a cut. 1A1: cut correct - may be drawn. Refer to max flow-min cut theorem three words out of four.	

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA027672
June 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

edexcel "

Mark Scheme (Results)

Summer 2012

GCE Decision D2
(6690) Paper 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012
Publications Code UA031968
All the material in this publication is copyright
© Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
$1^{\text {st }}$ Validity (Wed/Thur $13 / 14^{\text {th }}$ June)
$3^{\text {rd }}$ Validity (Tuesday $26^{\text {th }}$ June)
$2^{\text {nd }}$ Validity (Wednesday $20^{\text {th }}$ June)
$4^{\text {th }}$ Validity (Sunday $1^{\text {st }}$ July)

12 each time
(Not classified) - 'I think this is good' add your initials.
RFFU - Use it I agree
Poor example - don't use it.
Duplicate - I've changed the marks one this one - note marks changed.
Susie will mark them up as good example once they are commissioned.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- \quad The answer is printed on the paper
- - The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Special case for Q1

If they reduce columns then rows they get

$$
\left[\begin{array}{ccccc}
2 & 2 & 1 & 3 & 3 \\
0 & 0 & 2 & 0 & 0 \\
15 & 6 & 0 & 9 & 7 \\
0 & 2 & 1 & 0 & 4 \\
14 & 9 & 8 & 13 & 11
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & 1 & 0 & 2 & 2 \\
0 & 0 & 2 & 0 & 0 \\
15 & 6 & 0 & 9 & 7 \\
0 & 2 & 1 & 0 & 4 \\
6 & 1 & 0 & 5 & 3
\end{array}\right]
$$

Which is a three line situation. They have not followed the instructions on the QP and so missed out the first iteration.
Please give 1M1 1A1 (if earned) for their column then row reductions, but then 2M0 (and therefore 2A0) since they have not done the first iteration of the Hungarian Algorithm.

So 1M1 1A1 2M0 2A0 then other marks as usual.

Notes for question 1

a1M1 Reducing rows and then columns - See special case
a1A1 CAO
a2M1 Double covered +e ; one uncovered - e; and one single covered unchanged. 2 lines needed to 3 lines needed.
a2A1ft ft on their previous table.
a3M1 Double covered +e ; one uncovered - e; and one single covered unchanged. 3 lines needed to 5 lines needed. Watch out for 'slow Hungarian' (e.g. 2 'iterations' each subtracting 1), give M0 if seen.
a3A1ft ft on their previous table. Condone one 'new' error in table here.
a4A1 CSO on final table
$\mathrm{a} 5 \mathrm{~A} 1=\mathrm{B} 1 \mathrm{CAO}$
b1B1 CAO

Notes for question 2

a1M1 NN Each vertex visited at least once, accept 156324 across top of table (condone lack of return to start).
a1A1 Route CAO must be stated, must return to A, accept link back to A.
a2A1 Length CAO 100. Do not ISW if candidates then go on to double the route length.
b1M1 Finding correct RMST (maybe implicit) 57 sufficient; or 12, 12, 15 and 18. Must have 4 arcs.
b1A1 CAO; tree or list of arcs or 57 or $12+12+15+18$ seen.
b2M1 Adding 2 least arcs from A to 'tree'; 12 and 15 or AF and AE or 27 only. Must add these arcs distinctly. b2A1 CAO 84

Notes for question 3

Some candidates are starting by confirming that they should use AG as their first entering square. So if the candidate starts by finding initial shadow costs and II's to confirm that AG has the most negative II, ignore this work and start marking from their first route. Do not credit shadow costs and IIs found here.
a1M1 A valid route, AG used as the empty square, θ 's balance. If AG not used mark as a misread.
a1A1 A correct route, correctly stating exiting cell, up to my improved solution with no extra zeros.
a2M1 Finding 7 shadow costs and 6 IIs.
a2A1 Shadow costs CAO [Alt: A(17), B(18), C(18), D(0), E(2), F(-2), G(3)]
a3A1 Improvement indices CAO
a3M1 A valid route, their most negative II chosen, only one empty square used, θ 's balance.
a4A1ft a correct route, correctly stating entering cell, exiting cell.
a5A1 CSO, my solution no extra zeros.
b1M1 Finding 7 shadow costs and all 6 IIs or at least1 negative II found.
b1A1 Shadow costs CAO [Alt SC: A(17), B(21), C(18), D(0), E(-1), F(-2), G(3)]
b2A1 $\mathrm{BG}=-2$ found as an II.
b3A1ft CAO + conclusion. If candidates go on to perform a third iteration and determine that it is optimal, please allow this final mark. Must make link between negative II and not optimal.

Question	Scheme									Marks
Q4										
										$\begin{array}{ll} \text { 1M1 } & 1 \mathrm{~A} 1 \\ \text { B1 } \\ \text { 2M1 } & 2 \mathrm{~A} 1 \\ \hline \end{array}$
	r	5	$\frac{1}{2}$	0	1	0	0	5	10	
	s	1	-2	4	0	1	0	3	$-\frac{3}{2}$	
	t	8	4	6	0	0	1	6	$\frac{3}{2} \leftarrow$	
	P	-5	-7	-4	0	0	0	0		
	b.v.	x	$y \quad z$	r	s		t	value	Row ops	
	r	4	0 - $-\frac{3}{4}$	1	0		- $\frac{1}{8}$	$\frac{17}{4}$	R1- $\frac{1}{2} \mathrm{R} 3$	
	s	5	07	0	1		$\frac{1}{2}$	6	$\mathrm{R} 2+2 \mathrm{R} 3$	
	y	2	$1 \quad \frac{3}{2}$	0	0		$\frac{1}{4}$	$\frac{3}{2}$	$\mathrm{R} 3 \div 4$	
	P	9	0 $\frac{13}{2}$	0	0		$\frac{7}{4}$	$\frac{21}{2}$	$\mathrm{R} 4+7 \mathrm{R} 3$	
(b)(c)	$\mathrm{P}+9 x+\frac{13}{2} z+\frac{7}{4} t=\frac{21}{2}$ $\mathrm{P}=\frac{21}{2}-9 x-\frac{13}{2} z-\frac{7}{4} t$, so increasing x or z or t would decrease P									M1 A1 2
										B1 1
										Total 8

Notes for question 4

a1M1 Correct pivot located, attempt to divide row. If choosing negative number as pivot M0B0M0
a1A1 pivot row correct including change of b.v.
a1B1 Row operations CAO - allow if given in terms of old row 3 .
a2M1 (ft) Correct row operations used at least once, column x, z, t or value correct.
a2A1 CAO on the three non-pivot rows.
b1M1 One equal sign, P , terms in x, z, t plus a non-zero number term.
b1A1 CAO
c1B1 Explanation, must refer to increasing x, z and t, condone no ref to $x=z=t=0$, must have correct signs in equation in (b). Do not accept 'no negatives in profit row' o.e. alone.

Notes on question 5

a1B1 CAO. Accept 'air dominates land' etc. Must have a named row dominating a named row
b1M1 Setting up three probability equations, implicit definition of p.
b1A1 CAO
b2M1 Three lines drawn, accept $\mathrm{p}>1$ or $\mathrm{p}<0$ here. Must be functions of p .
b2A1 CAO $0 \leq \mathrm{p} \leq 1$, scale clear (or 1 line $=1$), condone lack of labels. Rulers used.
b3DM1 Must have drawn 3 lines. Finding their correct optimal point, must have three lines and set up an equation to find $0 \leq \mathrm{p} \leq 1$. If solving each pair of SE's must clearly select the correct one or M0, but allow recovery if their choice is clear from (c).
b3A1 CAO 5/9
b4A1ft All three options listed must ft from their p , check page 1, no negatives.
c1B1 CAO

Question Number	Scheme				Marks
Q5 (a) (b)	Row 1 (air) dominates row 3(land), (so Row 3 can be deleted)				B1
		Plan 1	Plan 2	Plan 3	
		0	4	5	
		2	-3	1	
	Let Goodie play row 1 with probability p, and row 2 with probability $1-p$. If F plays 1 G's expected winnings are $0+2(1-p)=2-2 p$ If F plays 2 G 's expected winnings are $4 p-3(1-p)=7 p-3$ If F plays 3 G's expected winnings are $5 p+(1-p)=4 p+1$				
					1M1 1A1
					$2 \mathrm{M} 12 \mathrm{~A} 1$
	$7 p-3=2-2 p$				3DM1
	$p=\frac{5}{9}$				3 A 1
	Row 1 (air) with probability $\frac{5}{9}$, row 2 (sea) with probability $\frac{4}{9}$ and never row 3 (land).				4A1ft 7
(c)	The value of the game to Goodie is $\frac{8}{9}$.				$\begin{array}{lc} \text { B1 } & 1 \\ & \text { Total } 9 \end{array}$

Notes for question 6

a1B1 CAO
b1M1 Two numbers on each arc
b1A1 CAO do give bod since they might well cross these number out.
c1M1 One valid flow augmenting route found and a valid value stated.
c1A1 Flow increased by at least 2
c2M1 A second correct flow route and value correct.
c2A1 CSO Flow increased by 5 and no more.
d1M1 Consistent flow pattern ≥ 48. One number only per arc. No unnumbered arcs.
d1A1 CAO must follow from their routes.
e1M1 Must have attempted (d) - at least one number on all but one arc, and made an attempt at a cut, condone one missing arc if listed. (Accept sum of arcs as evidence of cut here only.)
e1A1CSO For (d) and (e) Cut and (d) correct, Cut may be drawn. Must refer to max flow-min cut theorem three words out of four.

Question Number	Scheme	Marks
Q7	Let $x_{i j}$ be 0 or 1 $\left\{\begin{array}{l} 1 \text { if worker }(i) \text { does task }(j) \\ 0 \text { otherwise } \end{array}\right.$ where $i \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\}$ and $j \in\{\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}\}$ $\text { minimise } \begin{aligned} P & =23 x_{A P}+41 x_{A Q}+34 x_{A R}+44 x_{A S} \\ & +21 x_{B P}+45 x_{B Q}+33 x_{B R}+42 x_{B S} \\ & +26 x_{C P}+43 x_{C Q}+31 x_{C R}+40 x_{C S} \\ & +20 x_{D P}+47 x_{D Q}+35 x_{D R}+46 x_{D S} \end{aligned}$ Subject to $\begin{array}{rlll} x_{A P}+x_{A Q}+x_{A R}+x_{A S}=1 & \text { or } & \sum x_{A j}=1 \\ x_{B P}+x_{B Q}+x_{B R}+x_{B S}=1 & \text { or } & \sum x_{B j}=1 \\ x_{C P}+x_{C Q}+x_{C R}+x_{C S}=1 & \text { or } & \sum x_{C j}=1 \\ x_{D P}+x_{D Q}+x_{D R}+x_{D S}=1 & \text { or } & \sum x_{D j}=1 \\ x_{A P}+x_{B P}+x_{C P}+x_{D P}=1 & \text { or } & \sum x_{i P}=1 \\ x_{A Q}+x_{B Q}+x_{C Q}+x_{D Q}=1 & \text { or } & \sum x_{i Q}=1 \\ x_{A R}+x_{B R}+x_{C R}+x_{D R}=1 & \text { or } & \sum x_{i R}=1 \\ x_{A S}+x_{B S}+x_{C S}+x_{D S}=1 & \text { or } & \sum x_{i S}=1 \end{array}$	B1 1M1 1A1 2M1 2A1 3M1 3A1 7 Total 7

Notes for question 7

1B1 Defining variables fully both 'bits' values and subscripts. Penalise poor variable choice, (AP etc.) here.
1M1 Attempt at a 16 term expression, coefficients 'correct', but condone 2 slips.
1A1 CAO + minimise. Penalise reversed subscripts once only per question.
2M1 Four eqns, each in four vars, coeffs of 1 , all 16 vars included, $=1$, accept $\leq 1, \geq 1$ here for this M only
2A1 Any 4 CAO. Penalise reversed subscripts once only per question.
3M1 All 8 equations, each in four variables, unitary coefficients, all 16 variables included $=1$.
3A1 CAO. Penalise reversed subscripts once only per question.

Notes for question 8 - see alts too

ALL M marks - Must bring earlier optimal results into calculations. Ignore extra rows. Must have necessary right 'ingredients' (- storage costs, overheads, extra worker costs) at least once per stage.
1M1 First stage completed. 3 rows.
1A1 CAO condone missing * here. No extra rows.
2M1 Second stage completed. Expect 3 states.
2A1ft Any 2 states correct. Ft for * values only No missing/extra rows. (Penalise * errors only once in the qn).
3A1 CAO All 3 states correct. No missing rows. (Penalise * errors only once in the question).
3M1 $3^{\text {rd }}$ stage completed. Expect 3 states.
4A1ft Any state correct. Ft on * values only. No missing rows. (Penalise * errors only once in the qn).
5A1ft Any 2 states correct. Ft on $*$ values only. No missing rows. (Penalise $*$ errors only once in the qn).
6A1 CAO All 3 states correct. No missing/extra rows. (Penalise * errors only once in the question).
4M1 $\quad 4^{\text {th }}$ stage completed.
7A1 CAO Final, state correct. No missing/extra rows. (Penalise * errors only once in the question).
1B1 CAO. Must have attempted algorithm, getting at least one M mark.

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA031965 Summer 2012

Llywodraeth Cynulliad Cymru
Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

Alt correct solution - adding the storage costs at start of month.

Stage	State	Action	Dest	Value		
April	0	4	0	$400+$	300	$=700^{*}$
(4)	1	3	0	1 M 1		
	2	2	0	300	$=300^{*}$	1 A 1
March	0	3	0	300	$=300^{*}$	
(3)		4	1	$400+150+300+300=1150$	2 M 1	
	1	2	0	$300+700=1000$		
		3	1	$150+300+300=750^{*}$	2 A 1 ft	
		4	2	$400+300+300+300=1300$		
	2	1	0	$300+700=1000$		
		2	1	$150+300+300=750^{*}$	3 A 1	
		3	2	$300+300+300=900$		
Feb	0	2	0	$300+1000=1300$		
(2)		3	1	$150+300+750=1200^{*}$	3 M 1	
		4	2	$400+300+300+750=1750$	4 A 1 ft	
	1	1	0	$300+1000=1300$		
		2	1	$150+300+750=1200^{*}$	5 A 1 ft	
		3	2	$300+300+750=1350$		
	2	0	0	$1000=1000^{*}$		
		1	1	$150+300+750=1200$	6 A 1	
		2	2	$300+300+750=1350$		
Jan	0	2	0	$300+1200=1500^{*}$	4 M 1	
(2)		3	1	$150+300+1200=1650$		
		4	2	$400+300+300+1000=2000$	7 A 1	

Month	Jan	Feb	March	April	
Number made	2	3	3	3	B1

Special Case 1: Working forward Max 7/12 version 1

Stage	State	Action	Dest	Value		
Jan	0	2	0	300	$=300^{*}$	1M1
(2)		3	1	300	$=300^{*}$	1 A 1
		4	2	$400+$	300	$=700^{*}$

Month	Jan	Feb	March	April	
Number made	2	3	3	3	B1

Special Case 2: Working forward Max 7/12 version 2

Stage	State	Action	Dest	Value		
Jan	0	2	0	300	$=300^{*}$	1M1
(2)		3	1	$150+300$	$=450^{*}$	1A1
		4	2	$400+300+300$	$=1000^{*}$	
Feb	0	2	0	$300+300=600^{*}$	2 M 1	
(2)		3	1	$150+300+300=750^{*}$		
		4	2	$400+300+300+300=1300$		
	1	1	0	$300+450=750$		
		2	1	$150+300+450=900$		
		3	2	$300+300+450=1050^{*}$	2 A 0	
	2	0	0	$1000=1000$		
		1	1	$150+300+1000=1450$		
		2	2	$300+300+1000=1600$	3 A 0	
March	0	3	0	$300+600=900^{*}$	3 M 1	
(3)		4	1	$400+150+300+600=1450$	4 A 0	
	1	2	0	$300+750=1050$		
		3	1	$150+300+750=1200^{*}$		
		4	2	$400+300+300+750=1750$	5 A 0	
	2	1	0	$300+1050=1350$		
		2	1	$150+300+1050=1500$		
		3	2	$300+300+1050=1650^{*}$	6 A 0	
April (4)	0	4	0	$400+$	$300+900=1600$	4M1
	1	3	0	$300+1200=1500^{*}$		
	2	2	0	$300+1650=1950$	7A1	

Month	Jan	Feb	March	April	
Number made	2	3	3	3	B1

Special Case 3: Reversed states Max 7/12 version 1

Stage	State	Action	Dest.	Value		
April	0	4	0	$400+2300$	$=700^{*}$	1M1
(4)	1	3	0	$150+300$	$=450^{*}$	1 A 1 CAO
	2	2	0	$300+300$	$=600^{*}$	
March	0	3	0	$300+700=1000^{*}$	2 M 1	
(3)	1	2	0	$150+300+700=1150$		
	2	1	0	$300+300+700=1300$		
	0	4	1	$400+300+450=1150$		
	1	3	1	$150+300+450=900^{*}$	2 A 0	
	2	2	1	$300+300+450=1050^{*}$		
	1	4	2	$400+150+300+600=1450$	3 A 0	
	2	3	2	$300+300+600=1200$		
Feb.	0	2	0	$300+1000=1300$	3 M 1	
(2)	1	1	0	$150+300+1000=1450$	4 A 0	
	2	0	0	$300+$	$1000=1300^{*}$	
	0	3	1	$300+900=1200^{*}$		
	1	2	1	$150+300+900=1350^{*}$	5 A 0	
	2	1	1	$300+300+900=1500$		
	0	4	2	400	$+300+1050=1750$	
	1	3	2	$150+300+1050=1500$	6 A 0	
	2	2	2	$300+300+1050=1650$		
Jan.	0	2	0	$300+1200=1500^{*}$	4 M 1	
(2)	0	3	1	$300+1350=1650$		
	0	4	2	400	$+300+1300=2000$	7A1 CAO

Month	Jan	Feb	March	April	
Number made	2	3	3	3	B1

Special Case 4: Reversed states Max 7/12 version 2

Stage	State	Action	Dest	Value		
April	0	4	0	$400+$	$300=700^{*}$	1M1
(4)	1	3	0		$300=300 *$	1A1 CAO
	2	2	0		$300=300 *$	
March	0	3	0		$300+700=1000^{*}$	2M1
(3)	1	2	0		$300+700=1000$	
	2	1	0		$300+700=1000$	2A0
	0	4	1	$400+$	150+300+300 = 1150	
	1	3	1		$150+300+300=750 *$	
	2	2	1		$150+300+300=750^{*}$	
	1	4	2	$400+$	300+300+300 = 1300	
	2	3	2		$300+300+300=900$	3A0
Feb	0	2	0		$300+1000=1300$	3M1
(2)	1	1	0		$300+1000=1300$	4A0
	2	0	0		$1000=1000^{*}$	
	0	3	1		$150+300+750=1200^{*}$	
	1	2	1		$150+300+750=1200^{*}$	5A0
	2	1	1		$150+300+750=1200$	
	0	4	2	$400+$	300+300+750 = 1750	
	1	3	2		$300+300+750=1350$	6A0
	2	2	2		$300+300+750=1350$	
Jan	0	2	0		$300+1200=1500^{*}$	4M1
(2)		3	1		$150+300+1200=1650$	
		4	2	$400+$	$300+300+1000=2000$	7A1 CAO

Month	Jan	Feb	March	April	
Number made	2	3	3	3	B1

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA031968 Summer 2012

Llywodraeth Cynulliad Cymru
Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

edexcel

Mark Scheme (Results)
Summer 2013

GCE Decision Mathematics 2 (6690/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UA035695
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.
8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

Question Number	Scheme	Marks
1.(a)	Subtracting all elements from some $n \geq 228$ Reducing rows and then columns to get Using two lines and 2 to get Using three lines and 1 to get $\begin{array}{llll} 3 & 0 * & 0 & 0 \\ 0 & 3 & 1 & 0 * \\ 1 & 4 & 0 * & 0 \\ 0 * & 2 & 6 & 1 \end{array}$ So $C=2, J=4, K=3$ and $N=1$ maximum profit of $£ 664$ Note ' minimise' gives this special case $\begin{array}{llllllllll} 0 & 4 & 0 & 0 & & 0 * & 0 & 1 & 0 & \\ 4 & 2 & 0 & 1 & \text { then } & 3 & 1 & 0 & 0 * \\ 2 & 0 & 0 & 0 & 2 & 0 * & 1 & 0 & & \text { then } \\ 9 & 8 & 0 & 4 & 8 & 7 & 0 * & 3 & \mathrm{~J}=4 \\ \mathrm{C} & & \mathrm{~K}=2 \\ \mathrm{~N}=3 \end{array}$ Profit $£ 651$ Gives 5 max: (a) 1M0 2M1 1A1 3M0 2A0 4M1 3A1ft 4A0 (b) M1A0	1M1 2M1 1A1 3M1 2A1 4M1 3A1ft 4A1 (8) M1 A1 (2) 10 marks
	Notes for Question 1	
a1M1: Subtracting all elements from some $n \geq 228$, condone up to 2 errors a2M1: Reducing rows and then columns a1A1: CAO a3M1: Double covered +e ; one uncovered - e; and one single covered unchanged. 2 lines needed to 3 lines needed. a2A1: CAO a4M1: One double covered +e ; one uncovered - e; and one single covered unchanged. 3 lines needed to 4 lines needed. a3A1ft: on their previous table. a4A1: CSO on final table b1M1: Their optimal allocation (of workers to tasks) and an attempt to calculate the profit this mark is dependent on all M marks in (a) have been earned. b1A1: CAO		

Question Number	Scheme									Marks
5. (a)	b.v	x	y	z	r	S	t	Value	Row ops	M1 A1
	r	$\frac{4}{5}$	0	0	1	$\frac{1}{5}$	$-\frac{3}{5}$	11	$\mathrm{R}_{1}+\frac{1}{2} \mathrm{R}_{2}$	
	y	$\frac{3}{5}$	1	0	0	$\frac{2}{5}$	- $\frac{1}{5}$	2	$\mathrm{R}_{2} \div 2.5$	
	z	$\frac{1}{5}$	0	1	0	- $\frac{1}{5}$	$\frac{3}{5}$	4	$\mathrm{R}_{3}-\frac{1}{2} \mathrm{R}_{2}$	
	P	1	0	0	0	4	18	240	$\mathrm{R}_{4}+10 \mathrm{R}_{2}$	
(b)	$P+x+4 s+18 t=240$									B1 (1)
(c)	$P=240-x-4 s-18 t$ and at present x, s and t are zero. If we increase any of these the profit will decrease.									$\begin{aligned} & \mathrm{B2}, 1,0 \\ & \text { (2) } \end{aligned}$
										8 marks
Notes for Question 5										
a1M1: correct pivot located, attempt to divide row. If choosing negative pivot MOMO. a1A1: pivot row correct including change of b.v. a2M1: (ft) One row (excluding the pivot row) correct or one column either the value, x, s or t column correct. a2A1ft: Correct row operations used at least once. One column either the value, x, s or t column correct on the ft . a3A1: CAO. b1B1: CAO c1B1: Using their profit equation to make a pertinent statement. Maybe muddled, if bod give this mark only. No 'negatives' in their profit equation. c2B1: Good explanation - dependent on the correct equation being stated in (b).										

Question Number	Scheme	Marks
6.(a)	Initial flow $=93$	B1 (1)
(b)	Adds supersource S plus arcs $S A(49)$ and $\operatorname{SB}(57)$ Adds supersink T plus arcs HT(20) and IT(85)	M1 A1 (2)
		M1 A1 A1 (3)
(d)	E.g. SACDGIT - 2 and SACDGFIT - 3 Maximum flow $=98$	$\begin{aligned} & \text { M1 A1 } \\ & \text { A1 } \\ & \mathbf{(3)} \end{aligned}$
(e)	E.g.	M1 A1 (2)
(f)	Max flow = min cut, cut through CH, CF, DF, FG, Gl	M1 A1 (2)

Question Number	Scheme	Marks
		13 marks

Notes for Question 5

a1B1: CAO
b1M1: All relevant arcs added OR all arcs and numbers from supersource OR from supersink correct.
b1A1: CAO all arcs and numbers correct.
c1M1: 2 numbers and arrows on each arc.
c1A1: CAO Condone 4 errors.
c2A1: CAO.
d1M1: One valid flow augmenting route (from S to T) found and a value stated.
d1A1: Flow increased by 5 and no more.
d2A1: CAO 98 (allow if seen in (f) but must be clearly labelled as the maximum flow) e1M1: Consistent flow pattern > 95 - condone S and T's presence. Must have exactly one number on each arc.
e1A1: CAO must follow from their routes (allow if routes in (d) do not include S and/or T). f1M1: Must have attempted (e) and made an attempt at a cut.
f1A1: cut correct - may be drawn. Must have shown a correct flow of 98 in (e). Refer to max flow-min cut theorem all four words.

Examples of flow augmenting routes:

- SACDGFIT (3), SACDGIT (2)
- SBEDGFIT (3), SBEDGIT (2)
- SBEDGFIT (3), SACDGIT (2)
- SACDGFIT (3), SBEDGIT (2)

Question Number	Scheme	Marks
7.	E.g. Add 4 to each element Let p_{1}, p_{2}, p_{3} be the probability of (A) playing 1,2 and 3 respectively (where $p_{1}, p_{2}, p_{3} \geq 0$) let $V=$ value of the game (to player A) maximise $\mathrm{P}=\mathrm{V}$ subject to: $\begin{gathered} 5 p_{1}+2 p_{2}+9 p_{3} \geq V \\ p_{1}+7 p_{2}+3 p_{3} \geq V \\ 6 p_{1}+3 p_{2}+4 p_{3} \geq V \\ p_{1}+p_{2}+p_{3} \leq 1 \end{gathered}$	B1 B1 B1 B1 M1 A1 A1 (7) 7 marks
Notes for Question 7		
1B1: Making all terms non-negative. 2B1: Defining probability variables 3B1: Defining V 4B1: 'maximise' + function/expression 1M1: At least three equations/inequations in (V), p_{1}, p_{2} and p_{3} $1 A 1$: The three inequalities in V, p_{1}, p_{2} and $p_{3} C A O$ 1A1: probability sum inequality (or equation) correct.		

Notes for Question 8

- ALL M marks - Must bring earlier optimal results into calculations. Must have necessary right 'ingredients' (profit values from the table) at least once per stage.
- Penalise inconsistency/ errors with the state/ destination columns with the first two A marks earned only.
- Penalise empty/ errors in stage column with first A mark earned only.

1M1: First stage completed (bod something in each cell). Condone missing state 0 for this mark. Must have columns for stage, state, value and one of either action or destination.
1A1: CAO for first stage - condone missing * in this stage.
2M1: Second stage - states 0,1 and 2 complete (bod something in each cell). Condone missing state 0 for this mark.
2A1: States 0,1 and 2 correct for second stage. Penalise * errors only twice in the question on the first occurrences.
3A1: State 3 correct for second stage. Penalise * errors only twice in the question.
3M1: Second stage - states 3 and 4 complete (bod something in each cell).
4A1: State 4 correct for second stage. Penalise * errors only twice in the question.
5A1: State 5 correct for second stage. Penalise * errors only twice in the question. 4M1: Third stage complete (bod something in each cell).
6A1ft: Third stage correct (ft from previous stage). Penalise * errors only twice in the question.
5M1: For Fresh = 1, Frozen = 1, Canned = 3 - dependent on all previous M marks having been awarded.
7A1ft: Income correct for their table. Must have earned the first 4 M marks only (not dependent on 5M1).

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA035695 Summer 2013

Llywodraeth Cynulliad Cymru Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

edexcel

Mark Scheme (Results)
Summer 2013

GCE Decision Mathematics 2 (6690/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UA035688
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- \quad There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- - The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.
8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

Question Number	Scheme	Marks
(f)	The route is ABDECA (The optimal route length is 78, since upper bound = lower bound) a1M1 First three arcs (or all 5 nodes / or numbers across the top of the matrix) selected correctly (may start from any node). Award M1 only for a correct tree with no working. a1A1 CAO (order of arc selection clear) b1B1 112 CAO c1M1 Nearest Neighbour either A-B-C-E-D- or A-B-D-E-C- (condone lack of return to start). Accept 12354 or 12534 across the top of the matrix. c1A1 1 route and length CAO (Do not ISW if route length is doubled) c2A1 both routes and lengths CAO (Do not ISW if route lengths are doubled) d1B1ft their stated shortest (must be a number) e1M1 Finding correct RMST (maybe implicit) 48 sufficient, or correct numbers. 3 arcs. e1A1 CAO; tree or 48 or $11+18+19$ seen. e2M1 Adding 2 least arcs to B; 15 and 15 or two out of BA, BC or BD or 30 only e2A1 CAO 78 f1B1 CAO, accept any start point for the correct tour, but must return to start. Dependent on their answer to part $(\mathrm{d})=$ their answer to part (e).	B1 (1) Total 12

Question Number	Scheme	Marks
3(a)	Initial flow $=44$	B1
(b)	Value of cut $=12+7+4+10+2+5+31=71$	B1 (2)
(c)	e.g.SACFHT - 3; SADGIT - 4; SBEDFHT - 2 e.g. SACFHT - 3; SADFHT - 2; SADGIT - 2; SBEDGIT - 2	$\begin{aligned} & \text { M1A1;A1; } \\ & \text { A1 } \end{aligned}$
(d)		M1A1 (2)
(e)	Maximum flow=minimum cut e.g. cut through CH, CF, AD, BD, DE, EG and EI	DM1 A1 (2)
	b1B1 CAO c1M1 One valid flow augmenting route found and a value stated. c1A1 Flow increased by at least 2 c2A1 A second correct flow route (and value at least 2) correct c3A1 CSO Flow increased by 9 and no more. d1M1 Consistent flow pattern > 50 (check each node, must have exactly 1 number per arc) d1A1 CAO, showing flow of 53, must follow from their routes. e1DM1 Must have attempted (d) and made an attempt at a cut. e1A1 cut correct - may be drawn. Refer to max flow-min cut theorem all four words (alternative cut: CH, CF, AD, BD, BE).	
	Guidance for 3(c) SA +7 $\mathrm{SB}+2$ $\mathrm{AC}+3$ $\mathrm{AD}+4$ BD none $\mathrm{BE}+2$ $\mathrm{ED}+2$ CH none $\mathrm{CF}+3$ EG none EI none $(\mathrm{DF}+2$ $\mathrm{DG}+2$ $\mathrm{FH}+5$ FT none FI none $\mathrm{GI}+4$ $\mathrm{HT}+5$ IT +4)	

Question Number	Scheme	Marks
	a1B1 CAO (accept reduced matrix or 'column 2 dominates column 1' or column crossed out). Allow recover in part (b) b1B1 either 3×2 matrix with correct values (including signs) or 2×3 matrix with correct values (condone incorrect signs) b2B1 CAO c1M1 Setting up three probability expressions, implicit definition of ' p '. c1A1 CAO (condone incorrect simplification) c1B1ft Attempt at three lines (correct gradients and intersection with 'axes'), accept $\mathrm{p}>1$ or $\mathrm{p}<0$ here. Must be functions of p . c2B1 CAO $0 \leq p \leq 1$, scale clear (or 1 line $=1$), condone lack of labels. Rulers used. c2M1 Finding their correct optimal point, must have three lines and set up an equation to find $0 \leq p \leq 1$. Dependent on first B mark in part (c). Must have three intersection points. Solving all three simultaneous equations only is M0. c2A1 CSO c3B1 All three options listed must ft from their p, check page 1 for B should never play $1.0 \leq$ probabilities ≤ 1. c4B1 -2/13 CAO (accept awrt 0.154) SC1: If column 2 deleted in (a) candidates can earn a maximum of (a) B0 (b) B1 B0 (c) M1 A0 B1 B0 M1 A0 B1 B1 (max. of 6) - the final B mark is for the value of the game being $-4 / 3$ SC2: If column 3 is deleted in (a) candidates can earn a maximum of (a) B0 (b) B1 B0 (c) M1 A0 B1 B0 M0 A0 B0 B0	

Question Number	Scheme					Marks
7	Stage State Action Destination Value end 4 Sell - 1^{*} 3 Sell - 2^{*} 2 Sell - 4^{*} 1 Sell - 6^{*} 4 3 K 4 $1+2-3=0$ R 1 $6+11-9=8^{*}$ 2 K 3 $2+5-2=5$ R 1 $6+11-8=9^{*}$ 1 K 2 $4+8-1=11^{*}$ R 1 $6+11-7=10$ 3 2 K 3 $8+5-2=11$ R 1 $11+11-8=14^{*}$ 1 K 2 $9+8-1=16^{*}$ R 1 $11+11-7=15$ 2 1 K 2 $14+8-1=21^{*}$ R 1 $16+11-7=20$ 1 new K 1 $21+11=32^{*}$ The actions Nigel should take are: Keep, Keep, Replace, Keep in years 1, 2, 3 and 4 respectively His income will be $£ 32000$. 1M1 At least 3 columns in Stage 4 completed, something in each cell. 1A1 For stage 4 at least two columns of state, action, destination entries correct 2A1 Two rows in Stage 4 CAO. Penalise * errors only twice in the question on the first occurrences All future M marks must bring all optimal results from previous stage into current stage at least once (or three out of four previous results correct). 2M1 All four rows in stage 4 completed. Bod if something in each cell. 3A1 CAO. Stage 4 correct. (Penalise * errors only twice in the question). 3M1 Stage 3 completed. Bod if something in each cell. 4A1ft Any state correct (Penalise * errors only twice in the question). 5A1 CAO Both states correct. (Penalise * errors only twice in the question). 4M1 Stage 2 and 1 completed. Bod if something in each cell. 6A1ft CAO Stage 2 correct. (Penalise * errors only twice in the question). 7A1 CAO Stage 1 correct. 1B1 Actions correct. Must have earned all previous M marks 2B1ft Income correct for their table. Must have earned all previous M marks. Penalise extra rows for stage 4 with the $3{ }^{\text {rd }}$ A mark, stage 3 with the $5^{\text {th }} \mathrm{A}$ mark and stage 2 with the $6^{\text {th }} A$ mark.					1M1A1A1
						2M1 A1
						3M1A1ft
						A1 4M1 A1ft
						A1 B1 B1ft Total 13

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA035688 Summer 2013

Llywodraeth Cynulliad Cymru
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Rewarding Learning

edexcel

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Decision Mathematics 2R (6690/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UA038495
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
-There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATI CS

General I nstructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- \quad The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme	Marks
2. (a) (b)	In the practical problem each vertex must be visited at least once. In the classical problem each vertex must be visited just once. $\begin{align*} & \text { A D E F B C C A } \\ & 15+17+14+26+50+48=170 \tag{3} \end{align*}$	$\begin{equation*} \text { B2, 1, } 0 \tag{2} \end{equation*}$ M1 A1 A1
(c)		
(d)	$\begin{align*} & \text { RMST weight }=26+14+17+20=77(\mathrm{~km}) \\ & \text { Lower bound }=77+15+30=122(\mathrm{~km}) \tag{3} \end{align*}$	$\begin{aligned} & \text { M1 A1 } \\ & \text { A1 } \end{aligned}$
	$122 \leq$ length ≤ 170	$\begin{aligned} & \mathrm{B} 2,1,0 \\ & 10 \text { marks } \end{aligned}$
	Notes for Question 2	
a1B1: Understands the difference is connected to the number of times each vertex may be visited. a2DB1: Correctly identifies which is classical and which is practical and correctly states the difference. b1M1: Nearest neighbour A - D - E - F - B - C - or accept 145623 across top of table (condone lack of return to start). b1A1: Route correctly stated, must return to A, accept link back to A. b2A1: Length correctly stated. Do not ISW if candidates then go on to double the route length. c1M1: Finding RST (maybe implicit) and using the correct two least lengths. Their RST must have only four arcs of which none are incident to A. c1A1: RMST correct or list of arcs or 77 or $26+14+17+20$ seen. c2A1: CAO 122 d1B1ft: Their correct numbers correctly used (their upper bound must be a cycle and their lower bound must have scored M1 in (c)), accept any inequalities or any indication of interval from their 122 to their 170. d2B2: CAO including correct inequalities (but condone $122<$ length ≤ 170).		

Question
Number

Notes for Question 5

a1M1: Four arcs added, $\mathrm{SS}_{1}, \mathrm{SS}_{2}, \mathrm{~T}_{1} \mathrm{~T}, \mathrm{~T}_{2} \mathrm{~T}$ and 2 numbers on each.
a1A1: CAO for arcs
a2A1: CAO for flow values and capacities
b1M1: Two numbers on each arc and at least three arcs or six numbers correct.
b1A1: CAO do give bod since they might well cross these numbers out.
c1M1: One valid flow augmenting route found and a value stated.
c1A1: Flow increased by at least 3 .
c2A1: A second correct flow route of value at least 5 and value correct.
c3A1: CSO Flow increased by 21 and no more.
d1M1: Consistent flow pattern ≥ 84 (check each node). One number only per arc. No unnumbered arcs.
d1A1: CAO, showing flow of 102, must follow from their routes.
e1DB1: Must have attempted (d) - at least one number on all but one arc, and made an attempt at a cut, either drawn or stated.
e2DB1: CSO - (d) fully correct (showing a correct flow of 102) and a correct cut. Must refer to max flow-min cut theorem - all four words.

Question Number	Scheme	Marks
6.	Let $X_{i j}$ be 0 or 1 $\left.\begin{array}{l} \left\{\begin{array}{l} 1 \text { if worker }(i) \text { does task }(j) \\ 0 \text { otherwise } \end{array}\right. \\ \text { where } i \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\} \text { and } j \in\{1,2,3,4\} \end{array}\right\} \begin{array}{r} \text { minimise } C=29 x_{A 1}+15 x_{A 2}+32 x_{A 3}+30 x_{A 4} \\ +34 x_{B 1}+26 x_{B 2}+40 x_{B 3}+32 x_{B 4} \\ +28 x_{C 1}+27 x_{C 2}+35 x_{C 3}+100 x_{C 4} \\ + \end{array} \begin{array}{r} 100^{\prime} x_{D 1}+21 x_{D 2}+33 x_{D 3}+31 x_{D 4} \end{array} ~ l i$ Subject to $\begin{array}{cccc} x_{A 1}+x_{A 2}+x_{A 3}+x_{A 4}=1 & \text { or } & \sum x_{A j}=1 \\ x_{B 1}+x_{B 2}+x_{B 3}+x_{B 4}=1 & \text { or } & \sum x_{B j}=1 \\ x_{C 1}+x_{C 2}+x_{C 3}+x_{C 4}=1 & \text { or } & \sum x_{C j}=1 \\ x_{D 1}+x_{D 2}+x_{D 3}+x_{D 4}=1 & \text { or } & \sum x_{D j}=1 \\ x_{A 1}+x_{B 1}+x_{C 1}+x_{D 1}=1 & \text { or } & \sum x_{i 1}=1 \\ x_{A 2}+x_{B 2}+x_{C 2}+x_{D 2}=1 & \text { or } & \sum x_{i 2}=1 \\ x_{A 3}+x_{B 3}+x_{C 3}+x_{D 3}=1 & \text { or } & \sum x_{i 3}=1 \\ x_{A 4}+x_{B 4}+x_{C 4}+x_{D 4}=1 & \text { or } & \sum x_{i 4}=1 \end{array}$	M1 A1 M1 A1 M1 A1 7 marks
Notes for Question 6		
1B1: Defining variables fully both 'bits’ values and subscripts. Penalise poor variable choice, (AP etc.) here. 1M1: Attempt at a 16 term expression, coefficients 'correct', 2 'large' values included, condone 2 slips. 1A1: CAO + minimise. Penalise reversed subscripts once only per question. 2M1: Four equations, each in four variables, unit coefficients, all 16 variables included, $=1$, accept $\leq 1, \geq 1$ here for this M only 2A1: Any 4 CAO. 3M1: All 8 equations, each in four variables, unit coefficients, all 16 variables included $=1$. 3A1: CAO.		

Question Number	Scheme						
7. (a)	E.g.						1M1 1A1 (2)
	Stage	State	Action	Dest		Value	
	Bicycle	4	4	0	350		
		3	3	0	260		
		2	2	0	170		
		1	1	0	80		
		(0	0	0	0)		
	Dolls	4	0	4	$0+350=$		
	house		1	3	$95+260=$	55*	
			2	2	$165+170=3$		2M1 2A1 3A1 (3)
			3	1	$245+80=3$		States $4+3$
			4	0	$335+0=335$		
		3	0	3	$0+260=$		3M1 4A1 5A1 (3)
			1	2	$95+170=$	65^{*}	
			2	1	$165+80=$		
			3	0	$245+0=$		
		2	0	2	$0+170=$		
			1	1	$95+80=$	75*	
			2	0	$165+0=$		States $2+1$
		1	0	1	$0+80=$		
			1	0	$95+0=$		$\begin{aligned} & \text { 4M1 6A1ft } \\ & \text { 7A1 } \end{aligned}$
		(0	0	0	$0+0=$		
	Train	4	0	4	$0+355=$		
	set		1	3	$100+265=$	65*	
			2	2	$180+175=$		
			3	1	$260+95=$		(3)
			4	0	$340+0=$		
(b)	Toy			ycle	Dolls House	Train Set	1B1
	Number	worke	2		1	1	
	Total number of toys is 365 .						1B1
							13 marks

Notes for Question 7

- ALL M marks - Must bring earlier optimal results into calculations. Ignore extra rows. Must have right 'ingredients' (- number of workers) at least once per stage.
- Penalise inconsistency/errors with the state/destination columns with the first two A marks earned only.
- Penalise empty/errors in stage column with first A mark earned only.
a1M1: First stage (Bicycle) completed - bod something in each cell. Must have columns for stage, state, value and one of either action or destination.
a1A1: CAO condone missing * here. Condone missing zero row.
a2M1: Second stage (Dolls house) completed for at least states 4 and 3. Bod something in each cell.
a2A1: Any one of these states correct. No missing rows. (Penalise * errors only once in the question).
a3A1: CAO both states 4 and 3 correct. No missing rows. (Penalise * errors only once in the question). a3M1: Second stage (Dolls house) fully completed, condone missing zero row. Bod something in each cell.
a4A1: States 2 and 1 correct. No missing rows. (Penalise * errors only once in the question).
a5A1: CAO for stage 2. No missing rows. (Penalise * errors only once in the question).
a4M1: Third stage (Train set) completed. Bod something in each cell.
a6A1ft: Any three rows of third stage correct. Ft on * values only. No missing rows. (Penalise * errors only once in the question).
a7A1: CAO for the third stage. No missing rows. (Penalise * errors only once in the question).
a1B1: CAO. Must have attempted algorithm, getting all previous M marks.
b1B1: CAO. Must have attempted algorithm, getting all M marks in (a).

edexcel ${ }^{\text {: }}$

Mark Scheme (Results)
Summer 2014

Pearson Edexcel GCE in Decision Mathematics 2 (6690/01)

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
-Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
-There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UA038485
All the material in this publication is copyright
© Pearson Education Ltd 2014

EDEXCEL GCE MATHEMATI CS

General I nstructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

Notes for Question 1

1M1: Subtracting from some $n \geq 30$, condone up to 2 errors.
2M1: Dealing with the A4 and B2 entries.
3 M 1 : Reducing rows and then columns.
1A1: CAO
4M1: Double covered +e ; one uncovered -e ; and one single covered unchanged. 2 lines needed to 3 lines needed.
2A1ft: follow through on their previous table - no errors
5M1: One double covered + e; one uncovered - e; and one single covered unchanged. 3 lines needed to 4 lines needed (so getting to optimal table).
3A1ft: Follow through on their previous table - no errors.
4A1: CSO on final table.
5A1: CAO - either one - this mark is dependent on all M marks being awarded.

Special Cases: Minimising (can score a max. of 5)
1M0 2M1 3M1 1A1 4M0 2A0 5M1 3A1ft 4A0 5A0
E.g.

19	16	23	30		3	0	7	14		3	0	5	14
24	30	30	23	rows	1	7	7	0	columns	1	7	5	0
18	17	25	18		1	0	8	1		1	0	6	1
24	24	26	24		0	0	2	0		0	0	0	0

Then either

2	0^{*}	4	14	or	2	0^{*}	4	13
0	7	4	0^{*}		1	8	5	0^{*}
0^{*}	0	5	1		0^{*}	0	5	0
0	1	0^{*}	1		0	1	0^{*}	0

Not dealing with the - (can score a max. of 6)

1M1 2M0 3M1 1A0 4M1 2A1ft 5M1 3A1ft 4A0 5A0

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks

\hline 2. (a)
(b)

(c) \& \begin{tabular}{l}
A E F B C D A and A E F D B C A $35+75+88+80+108+85=471 \quad 35+75+88+100+80+130=508$

RMST weight $=85+35+83+80=283$ (seconds)

Lower bound $=283+75+88=446$ (seconds)

$446 \leq$ time $\leq 471 \quad$ [accept $446<$ time $\leq 471]$

 \&

M1 A1

A1 A1

(4)

M1 A1

A1

(3)

B3,2,1,0

(3)

10 marks
\end{tabular}

\hline \multicolumn{3}{|c|}{Notes for Question 2}

\hline \multicolumn{3}{|l|}{| a1M1: Nearest neighbour either A - E-F - B - C - D - or A - E - F - D - B - C - , condone lack of return to start. Accept 145623 or 156423 across top of table (numbers must be from NN not Prim). |
| :--- |
| a1A1: One route correctly stated, must return to A , accept link back to A . |
| a2A1: One route length correctly stated. Do not ISW if candidates then go on to double the route length in (a). |
| a3A1: Second route and its length correctly stated. Do not ISW if candidates then go on to double the route length in (a). |
| b1M1: Finding RST (maybe implicit) and using the correct two least lengths. Their RST must have only four arcs none of which are incident to F. |
| b1A1: RMST correct or list of arcs or 283 or $85+35+83+80$ seen. |
| b2A1: CAO 446 |
| c1B1ft: their 471 (must be a cycle) as an upper bound - allow recovery in this part. |
| c2B1ft: any indication of interval from their 446 (must come from six arcs) to their 471. |
| c3B1: $446 \leq$ time ≤ 471 or $446<$ time ≤ 471 |}

\hline
\end{tabular}

Question Number	Scheme	Marks
4. (a) (b)	Row mins $\{-3,-3\}$ Column max $\{2,2,1,1\}$ Row maximin (-3) \neq column minmax (1) so not stable Column 4 dominates column 2 so delete column 2 or if B plays 2 A's expected winnings are $-p+2(1-p)(=2-3 p)$	M1 A1 (2) B1
	B1 B3 B4 A1 2 1 -3 A2 -3 -2 1	
	Let A play 1 with probability p and 2 with probability $1-p$ If B plays 1 A's expected winnings are $2 p-3(1-p)=5 p-3$ If B plays 3 A's expected winnings are $\quad p-2(1-p)=3 p-2$ If B plays 4 A's expected winnings are $-3 p+(1-p)=1-4 p$	B1 M1 A1
		M1 A1
	$\begin{aligned} & 5 p-3=1-4 p \\ & p=\frac{4}{9} \end{aligned}$ A should play row 1 with probability $\frac{4}{9}$ and row 2 with probability $\frac{5}{9}$	M1 A1 A1
		$11 \text { marks }$ (9)

Notes for Question 4

a1M1: Finding row minimums and column maximums - condone one error.
a1A1: CAO states $-3 \neq 1$ (or row (maximin) $\neq \operatorname{col}$ (minimax)) and draws the conclusion.
b1B1: CAO Col 4 dominates Col 2 (maybe implied by later working) or correctly stating the expression for A's expected winnings if B plays $2(2-3 p)$.
b2B1: Defines p. Allow those who only define that A plays 1 with prob. p - no incorrect statements be generous.
b1M1: Setting up three probability equations, implicit definition of p .
b1A1: CAO (condone incorrect simplification).
b2M1: Either attempt at three lines (correct slant direction and relative intersection with 'axes') or four lines if no earlier domination, accept $p>1$ or $p<0$ here. Must be functions of p.
b2A1: CAO $0 \leq p \leq 1$, scaling correct and clear (or 1 line $=1$), condone lack of labels. Rulers used.
b3DM1: Finding their correct optimal point, must have three (or four) lines and set up an equation to find $0 \leq \mathrm{p} \leq 1$. Dependent on previous M mark. Must have at least three intersection points. Solving all three simultaneous equations and stating incorrect p is M 0 .
b3A1: CAO (must have scored all marks except b2B1 (define p mark) in this part).
b4A1: CAO

SC1: If column 4 is deleted in (b) candidates can earn a maximum of

B0 B1 M1 A0 M1 A0 M1 A0 A1 (max. of 5 out of 9 in part b)

The final A mark is for 'A should play row 1 with prob. $2 / 3$ and row 2 with prob. $1 / 3$.
SC2: If column 1 or 3 is deleted in (b), candidates can earn a maximum of

B0 B1 M1 A0 M1 A0 M0 A0 A0 (max. of 3 out of 9 in part b)

Question Number	Scheme	Marks
5.(a)	Initial flow $=62$	B1 (1)
(b)		M1 A1
(c)	E.g. SCEADT 2 SBADT 2 SCEDT -3 SCBADT 2 SCEDT 3 SBCEDT 1 SCEADT -3 SBCEDT 3 SBCEADT 1 SCEDT 2 SBADT -2 SCEADT 3 SBADT 2 SCEADT 3	(2) $\begin{align*} & \text { M1 A1 } \\ & \text { A1 } \\ & \text { A1 } \tag{4} \end{align*}$
(d)		M1 A1 (2)
(e)	The cut through SA, AB, AE, DE, ET and FT has value 70 Value of the flow is 70 so by max flow - min cut theorem flow is maximal	$\begin{aligned} & \text { DB1 } \\ & \text { DB1 } \end{aligned}$
		11 marks

Notes for Question 5

a1B1: CAO
b1M1: Two numbers on each arc and at least two arcs or four numbers correct (so correct numbers with the correct arrows).
b1A1: CAO do give bod since they might well cross these number out.
c1M1: One valid flow augmenting route found and a value stated.
c1A1: Flow increased by at least 2.
c2A1: A second correct flow route and value correct.
c3A1: CSO Flow increased by 8 and no more.
d1M1: Consistent flow pattern ≥ 64 (check each node). One number only per arc. No unnumbered arcs. d1A1: CAO, showing flow of 70, must follow from their routes.
e1DB1: Must have attempted (d) - at least one number on all but one arc, and either drawn or stated a cut. Cut may be drawn on any diagram.
e2DB1: CSO - (d) fully correct (showing a correct flow of 70) and a correct cut. Must refer to max flow-min cut theorem - all four words.

Question Number	Scheme	Marks
6.	Let $x_{i j}$ be the number of washing machines transported from i to j where $i \in\{\mathrm{P}, \mathrm{Q}, \mathrm{R}\}$ and $j \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\}$ The objective is to minimise $\begin{aligned} C & =11 x_{P A}+22 x_{P B}+13 x_{P C}+17 x_{P D} \\ & +21 x_{Q A}+8 x_{Q B}+19 x_{Q C}+14 x_{Q D} \\ & +15 x_{R A}+10 x_{R B}+9 x_{R C}+12 x_{R D} \end{aligned}$ Subject to	B1 B1 B1 M1 A1 A1 A1 7 marks
	Notes for Question 6	
1B1: Variables defined correctly - withhold this mark if definition of $x_{i j}$ or the elements of sets i and j are inconsistent with their later use in the objective function and constraints. Penalise poor variable choice, (AP etc.) here. 2B1: Minimise + an attempt at an objective with at least 5 correct terms. 3B1: Objective function correct (minimised not required for this mark). 1M1: At least 3 'correct' constraints listed with unit coefficients (accept = or any inequality for the M mark) - rhs values must be correct. 1A1: At least 3 correct constraints (accept consistent use of $=$ or \leq on at least 3). 2A1: At least 6 correct constraints (accept consistent use of $=$ or \leq on at least 6). 3A1: All 8 constraints correct (first seven constraints consistently either $=$ or \leq but final constraint must be ≥ 0).		

Notes for Question 7

ALL M marks - Must bring earlier optimal results into calculations. Ignore extra rows. Must have right 'ingredients' (- storage costs, overheads, additional space costs) at least once per stage.

Penalise lack of * only once per question.
1M1: First stage completed. 3 rows, something in each cell.
1A1: CAO condone missing * here. No extra rows.
2M1: Second stage completed with 3 states and at least 6 rows. Bod if something in each cell.
2A1ft: Any 2 states correct. Ft for their * values or the correct * values.
3A1: CAO All 3 states correct. No missing/extra rows.
3M1: $3^{\text {rd }}$ stage completed with 3 states and at least 9 rows. Bod if something in each cell.
4A1ft: Any state correct. Ft on their * values or the correct * values.
5A1: CAO All 3 states correct. No missing/extra rows.
4M1: $4^{\text {th }}$ stage completed with 3 states and at least 6 rows. Bod if something in each cell.
6A1: CAO All 3 states correct. No missing/extra rows.
5M1: $5^{\text {th }}$ stage completed with at least 2 rows. Bod if something in each cell.
7A1: CAO Final, state correct. No missing/extra rows.
1B1: CAO Must have earned all previous M marks.
2B1: CAO Must have earned all previous M marks.

Alt correct solution - adding the storage costs at start of each month

Stage	State	Action	Dest	Value		
July	2	1	0	2000	$=2000^{*}$	1M1
(3)	1	2	0	2000	$=2000^{*}$	1A1
	0	3	0	2000	$=2000^{*}$	
June	2	2	0	2000	$+2000=4000^{*}$	2M1
(4)		3	1	$500+2000$	$+2000=4500$	
		4	2	$1000+2000+1000+2000=6000$		
	1	3	0	2000	$+2000=4000^{*}$	2A1ft
		4	1	$500+2000+1000+2000=5500$		
	0	4	0	$2000+1000+2000=5000^{*}$	3A1	
May	2	0	0		$5000=5000^{*}$	3 M 1
(2)		1	1	$500+2000$	$+4000=6500$	
		2	2	$1000+2000$	$+4000=7000$	
	1	1	0	2000	$+5000=7000$	
		2	1	$500+2000$	$+4000=6500^{*}$	4 A 1 ft
		3	2	$1000+2000$	$+4000=7000$	
	0	2	0	2000	$+5000=7000$	
		3	1	$500+2000$	$+4000=6500^{*}$	5 A 1
		4	2	$1000+2000+1000+4000=8000$		
April	2	2	0	2000	$+6500=8500^{*}$	4 M 1
(4)		3	1	$500+2000$	$+6500=9000$	
		4	2	$1000+2000+1000+5000=9000$		
	1	3	0	2000	$+6500=8500^{*}$	6 A 1
		4	1	$500+2000+1000+6500=10000$		
	0	4	0	$2000+1000+6500=9500^{*}$		
March	0	3	0	2000	$+9500=11500^{*}$	5 M 1
(3)		4	1	$500+2000+1000+8500=12000$	7 A 1	

Month	March	April	May	June	July	
Number made	3	4	3	3	3	1B1

.

\qquad
\square

\qquad
\qquad
\qquad

edexcel ㅃ̈̈̈․

Mark Scheme (Results)

Summer 2015

Pearson Edexcel GCE in
Decision Mathematics 2 (6690/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code UA041216
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- \quad All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General I nstructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol \int will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme	Marks
2.(a)	The gains (or losses) made by one player are exactly balanced by the losses (or gains) made by the other player.	B1 (1)
(b)	5	B1 (1)
(c)	Row minimum $\{-3,0,-5\}$ Row maximin $=0$ Column maximum $\{2,4,2\}$ Column minimax $=2$ $0 \neq 2$ so no stable solution	M1 A1 A1 B1 (3)
(d)	Column 1 dominates column 2 so remove column 2 $\left(\begin{array}{ccc} 3 & 0 & -2 \\ -2 & -1 & 5 \end{array}\right)$	B1 B1ft B1 (3)
(e)	(Let $p=$ probability that Greg plays new row 1) If R plays 1: G's expected winnings $=3 p-2(1-p)(=5 p-2)$ If R plays 2: G's expected winnings $=0 p-1(1-p)(=p-1)$ If R plays 3: G's expected winnings $=-2 p+5(1-p)(=-7 p+5)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
		$\text { B2, 1ft, } 0$
	$\begin{aligned} & p-1=-7 p+5 \\ & 8 p=6 \\ & p=\frac{3}{4} \end{aligned}$ G should play 1 with probability $\frac{3}{4}, 2$ never and play 3 with probability $\frac{1}{4}$ The value of the game to G is $-\frac{1}{4}$	DM1 A1 A1ft A1 (8) $\mathbf{1 6 ~ m a r k s ~}$

Notes for Question 2

a1B1: CAO (indication that either the losses of one (player) are balanced by the gains of the other (player) or that the total points scored by both (players) is zero)
b1B1: CAO (5)
c1M1: Clear attempt to find the Row maximin and Column minimax (either the Row minimums or Column maximums correct or at least four (of the six) values stated correctly)
c1A1: Correct Row maximin and Column minimax (dependent on all row mins and column maxs correct) c2A1: CAO (so both previous marks must have been awarded) states $0 \neq 2$ (or row (maximin) \neq col (minimax) as long as 0 is clearly identified as the row maximin and 2 as the column minimax) and draws the correct conclusion
d1B1: CAO (accept reduced matrix or 'column 1 dominates column 2' or column crossed out). Allow recovery later (seeing the correct $\mathbf{2 \times 3} \mathbf{~ m a t r i x ~ i m p l i e s ~ a l l ~ t h r e e ~ m a r k s ~ i n ~ t h i s ~ p a r t) ~}$
d2B1ft: Either 3×2 matrix with correct values for \mathbf{G} (so all signs changed correctly) or 2×3 matrix with correct values for \mathbf{G} (condone incorrect signs). If incorrect column deleted (so B0 for first mark in this part) then allow this mark on the ft for their 3×2 matrix transposed 'correctly' for \mathbf{G} (both values and signs 'correct')
d3B1: CAO
e1M1: Setting up all three probability expressions (allow $p-1$), implicit definition of ' p '
e1A1: CAO (condone incorrect simplification)
e1B1ft: Attempt at three lines (correct slant direction and relative intersection with 'axes'), accept $p>1$ or $p<0$ here but must go from 'axis' to 'axis' (give bod if close). Must be functions of p e2B1: CAO $0 \leq p \leq 1$, scaling correct and clear (expect to see 1 line $=1$, although other scalings are acceptable eg 1 line $=2$), condone lack of labels. Rulers used
e2DM1: Finding their correct optimal point, must have three lines and set up an equation to find $0 \leq p \leq 1$.
Dependent on first B mark in this part. Must have three intersection points. Solving all three simultaneous equations and stating incorrect p is M0
e2A1: CSO (must have scored all previous marks in (e))
e3A1ft: All three options listed must ft from their $p(0 \leq p \leq 1)$, check page 1 for G should never play 2.
Dependent on both previous M marks in this part
e4A1: CAO $\left(-\frac{1}{4}\right)$
SC1: If column 1 is deleted in (d) candidates can earn a maximum in (e) of
M1 A0 B1 B0 M1 A0 A1 A1 (max. of 5) - the penultimate A mark is for G should play 1 never, play 2 and 3 with probability $\frac{1}{2}$, final A mark is for the value of the game being $-\frac{3}{2}$

SC2: If column 3 is deleted in (d) candidates can earn a maximum in (e) of
M1 A0 B1 B0 M0 A0 A0 A0 (max. of 2)

Question Number	Scheme	Marks
3.(a)	Prim: AF, EF, BE, BC, CD, DG	M1 A1 (2)
(b)	$2 \times 136=272(\mathrm{~km})$	B1 (1)
(c)	$\begin{equation*} \tag{2} \end{equation*}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$
(d)	Starting at F route length is $153+x$ With $x>21,153+x$ is greater than 166 so the better upper bound is the one starting at A	$\begin{array}{ll} \hline \text { B1 } \\ \text { DB1 } \end{array}$
(e)	$\begin{aligned} & \text { Length of RMST }=115 \\ & 115+21+x=159 \therefore x=23(\mathrm{~km}) \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { M1 A1 } & \text { (3) } \\ \hline \end{array}$
(f)	$159 \leq$ optimal ≤ 166 [accept $159<$ optimal $\leq 166]$	$\begin{aligned} & \mathrm{B} 2,1,0 \\ & 12 \text { marks } \\ & \hline \end{aligned}$

Notes for Question 3

a1M1: Must be using Prim's algorithm not NNA - if any arc creates a cycle then M0. First four arcs (or all 7 nodes / or numbers across the top of the matrix) selected correctly. Award M1 only for a correct tree with no working. Award M1 only for the first four arcs (oe) selected correctly if starting at a different node than A
a1A1: CAO (order of arc selection clear)
b1B1: CAO (272)
c1B1: CAO - must be either in terms of nodes or arcs (not weights)
c2B1: CAO (166)
d1B1: Either $153+x$ or states a value in the interval $174<$ value <180 or considers one of the intervals $174<$ value <180 or $175 \leq$ value ≤ 179
d2DB1: Correct argument that A gives the better upper bound. Must be considering either $x>21$ or $x \geq 22$ with 153 (so expect to see as a minimum the mention of >174 or ≥ 175) - must be clear that the upper bound starting at A is the better upper bound. This mark is dependent on the previous B mark in (d)
e1B1: CAO (length of RMST) - the length (115 or $19+20+27+24+25$) must be either explicitly stated or seen in their working (not just implied by their working)
e1M1: Adding the correct two least values (21 and x) to their RMST length (their RMST may be incorrect but must contain only 5 arcs) and equating to 159 . Accept, for example, $136+x=159$ or $136+23=159$ or $115+21+23=159$ or equivalent calculations using the length of their RMST e1A1: CAO (must be clear that ($x=$) 23 not just embedded in a calculation)
f1B1: Any indication of an interval containing 159 (as a lower bound) and their stated better upper bound from (d)
f2B1: CAO either $159 \leq$ optimal (oe) ≤ 166 or $159<$ optimal (oe) ≤ 166

Question Number	Scheme	Marks
4.(a)	$C_{1}=45, C_{2}=73$	B1 B1 (2)
(b)	45	B1ft (1)
(c)	20	B1 (1)
(d)	The maximum capacity of the arcs flowing into G is 21 and so both GF and GT cannot be full to capacity as the capacity of the arcs flowing out of G is 26	B1 (1)
(e)		M1 A1 (2) 7 marks
Notes for Question 4		
a1B1: CAO for $C_{1}(45)$ a2B1: CAO for C_{2} (73) b1B1ft: 45 or the value of their smallest cut from (a) c1B1: CAO (20) d1B1: CAO - argument must be numerical in nature (as a minimum accept $26>21$ (oe)) e1M1: Consistent flow pattern - check each node, must have exactly 1 number per arc (arc EC must be 4, $\mathrm{AD}-10$ and $\mathrm{DF}-3$ but all other arcs may have over-capacatiated values) e1A1: CAO		

Question	Scheme	Marks
Number		

Notes for Question 5

a1M1: A valid route, only one empty square, AQ used, θ 's balance
a1A1: Correct route, up to an improved solution (six numbers no zeros)
b1M1: Finding 7 shadow costs and 6 Improvement indices
b1A1: Shadow costs [Alt: $\mathrm{A}(20), \mathrm{B}(7), \mathrm{C}(9), \mathrm{D}(31), \mathrm{P}(0), \mathrm{Q}(-15), \mathrm{R}(-21)$] and improvement indices CAO b2M1: A valid route, their most negative II chosen, only one empty square used, θ 's balance
b2A1: CSO (for part (b)) (entering DP, and exiting DQ clearly stated)
c1M1: Finding 7 shadow costs and all 6 IIs or at least 1 negative II found
c1A1: CAO for the shadow costs [Alt: $\mathrm{A}(20), \mathrm{B}(7), \mathrm{C}(9), \mathrm{D}(22), \mathrm{P}(0), \mathrm{Q}(-15), \mathrm{R}(-12)$] and 6 positive II c2A1: CSO (for part (c)) + reason + optimal
d1B1: CAO (2532)
e1B1: $x_{i j}$ (not just x) defined correctly (must include 'number of' (oe) and 'from i to j ' (oe)). Withold this mark if $x_{i j}$ is further defined as taking the values of either 0 or 1
e2B1: Defining the set of values for i and j including non-negativity constraint - withold this mark if definition is inconsistent with their later use in the objective function and constraints (eg A, B, ... in the definition but $1,2, \ldots$ used in constraints and objective)
e1M1: Objective function (allow one error either in coefficient or variable) - minimise not required for this mark
e1A1: CAO - Correct objective function and minimise
e2M1: At least 3 constraints listed with unit coefficients (accept = or any inequality for the M mark) - rhs values must be correct
e2A1: At least 5 correct constraints (accept consistent use of $=$ or \leq on at least 5)
e3A1: All 7 constraint correct (accept consistent use of $=$ or \leq on all 7)
Note: if there are inconsistencies between the constraints and the objective function then mark to the benefit of the candidate. For example, a candidate who correctly defines $x_{i j}$ and its set of values and writes down the constraints correctly (based on their definition of $x_{i j}$) but in the objective function omits the x (so uses, for example, AP, AQ, etc.) then this would scored B1B1M0A0M1A1A1

Question Number	Scheme					Marks	
6.(a)	Maximin					B1	(1)
(b)	Stage	State	Action	Destination	Value	M1 A1	
		G	GT	T	8*		
		H	HT	T	5*		
		J	JT	T	6*		
	2	D	DH	H	$\min (10,5)=5 *$	M1 A1 A1	
		E	EG	G	$\min (9,8)=8^{*}$		
			EH	H	$\min (8,5)=5$ $\min (7.6)=6$		
		F	FH	H	$\min (8,5)=5^{*}$		
			FJ	J	$\min (5,6)=5^{*}$		
	1	A	AD	D	$\min (8,5)=5$	M1 A1ft A1	
			AE	E	$\min (6,8)=6^{*}$		
		B	$\begin{aligned} & \hline \mathrm{BE} \\ & \mathrm{BF} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{~F} \\ & \hline \end{aligned}$	$\begin{aligned} \min (17,8) & =8^{*} \\ \min (9,5) & =5 \end{aligned}$	M1 A1 (10)	
		C	$\begin{aligned} & \text { CD } \\ & \text { CF } \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & \min (10,5)=5^{*} \\ & \min (10,5)=5^{*} \end{aligned}$		
	0	S	$\begin{aligned} & \hline \text { SA } \\ & \text { SB } \\ & \text { SC } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \min (11,6)=6 \\ & \min (8,8)=8^{*} \\ & \min (12,5)=5 \end{aligned}$		
(c)	Maximum weight $=8$ (tonnes)					B1	(1)
(d)	Route: S-B-E-G-T					B1	(1)
$\begin{gathered} \text { (e)(i) } \\ \text { (ii) } \end{gathered}$	Increase HT (by 5) to 10 Maximum weight $=10$ (tonnes) New route: S - C - D - H - T					B1 B1 B1 16	

Question		
Number	Scheme	Marks

Notes for Question 6

a1B1: CAO
Throughout (b):

- Condone lack of destination column and/or reversed stage numbers throughout
- Only penalise incorrect result in value - ie ignore working values
- Penalise absence of state or action column with first two A marks earned only
- Penalise empty/errors in stage column with first A mark earned only
$2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }} \mathbf{M}$ marks - must bring earlier optimal results into calculations at least once

Penalise lack of * only once

b1M1: First stage completed. 3 rows, something in each cell
b1A1: CAO condone missing * here
b2M1: Second stage completed with 3 states and at least 6 rows. Bod if something in each cell
b2A1: Second stage any 2 states correct
b3A1: CAO all 3 states correct (no missing/extra rows)
b3M1: Third stage completed with 3 states and at least 6 rows. Bod if something in each cell b4A1ft: Third stage any two states correct. Follow through their * values or the correct * values b5A1: CAO all 3 states correct (no missing/extra rows)
b4M1: Fourth stage completed with 1 state and at least 3 rows. Bod if something in each cell b6A1: CAO final state correct (no missing/extra rows)
c1B1: CAO weight (8) (dependent on scoring all M marks in (b))
d1B1: CAO route ($\mathrm{S}-\mathrm{B}-\mathrm{E}-\mathrm{G}-\mathrm{T}$) (dependent on scoring all M marks in (b))
e1B1: Indication of either increasing HT by 5 or increasing HT to 10
e2B1: CAO (10)
e3B1: CAO (S - C - D - H - T)
Special Cases for (b), (c) and (d)
SC1 Minimax: M1 A1 M1 A0 A0 M1 A1 A0 M1 A0 B1 B1 (Max 8/12)
SC2 Maximum: M1 A1 M1 A0 A0 M1 A0 A0 M1 A0 B0 B1 (Max 6/12)
SC3 Minimum: As above (SC2)
SC4 Maximax: M1 A1 M1 A0 A0 M1 A0 A0 M1 A0 B0 B0 (Max 5/12)
SC5 Minimin: As above (SC4)
SC6 Working forwards: M1 A0 M1 A0 A0 M1 A0 A0 M1 A0 B0 B0 (Max 4/12)
SC7 Reversed states: M1 A0 M1 A0 A0 M1 A0 A0 M1 A1 B1 B1 (Max 7/12)

Question Number	Scheme				
SC1 Minimax:					
	Stage	State	Action	Destination	Value
	3	G	GT	T	8*
		H	HT	T	5*
		J	JT	T	6*
	2	D	DH	H	$\max (10,5)=10^{*}$
		E	EG	G	$\max (9,8)=9$
			EH	H	max $(8,5)=8$
			EJ	J	$\max (7,6)=7 *$
		F	FH	H	$\max (8,5)=8$
			FJ	J	$\max (5,6)=6^{*}$
	1	A	AD	D	$\max (8,10)=10$
			AE	E	max $(6,7)=7^{*}$
		B	BE	E	$\max (17,7)=17$
			BF	F	max $(9,6)=9^{*}$
		C	CD	D	$\max (10,10)=10^{*}$
			CF	F	$\max (10,6)=10^{*}$
	0	S	SA	A	$\max (11,7)=11$
			SB	B	$\max (8,9)=9^{*}$
			SC	C	$\max (12,10)=12$

Weight: 9 Route: S - B - F - J - T

SC2 Maximum:

Stage	State	Action	Destination	Value
3	G	GT	T	8*
	H	HT	T	5*
	J	JT	T	6*
2	D	DH	H	$10+5=15^{*}$
	E	EG EH EJ	G	$\begin{aligned} & 9+8=17^{*} \\ & 8+5=13 \\ & 7+6=13 \end{aligned}$
	F	$\begin{aligned} & \text { FH } \\ & \text { F } \end{aligned}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~J} \\ \hline \end{gathered}$	$\begin{aligned} & 8+5=13^{*} \\ & 5+6=11 \\ & \hline \end{aligned}$
1	A	$\begin{aligned} & \hline \mathrm{AD} \\ & \mathrm{AE} \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 8+15=23^{*} \\ & 6+17=23^{*} \end{aligned}$
	B	$\begin{aligned} & \mathrm{BE} \\ & \mathrm{BF} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{~F} \\ & \hline \end{aligned}$	$\begin{aligned} & 17+17=34^{*} \\ & 9+13=22 \\ & \hline \end{aligned}$
	C	$\begin{aligned} & \mathrm{CD} \\ & \mathrm{CF} \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 10+15=25^{*} \\ & 10+13=23 \end{aligned}$
0	S	$\begin{aligned} & \text { SA } \\ & \text { SB } \\ & \text { SC } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 11+23=34 \\ & 8+34=42^{*} \\ & 12+25=37 \end{aligned}$

Route: S - B - E - G - T

Question	Scheme	Marks
Number		
SC3 Min		

SC3 Minimum:

Stage	State	Action	Destination	Value
3	G	GT	T	8*
	H	HT	T	5*
	J	JT	T	6*
2	D	DH	H	$10+5=15^{*}$
	E	$\begin{aligned} & \text { EG } \\ & \text { EH } \end{aligned}$ EJ	$\begin{gathered} \hline \mathrm{G} \\ \mathrm{H} \\ \mathrm{~J} \\ \hline \end{gathered}$	$\begin{aligned} & 9+8=17 \\ & 8+5=13^{*} \\ & 7+6=13^{*} \end{aligned}$
	F	$\begin{gathered} \text { FH } \\ \text { FJ } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~J} \\ \hline \end{gathered}$	$\begin{aligned} & 8+5=13 \\ & 5+6=11^{*} \\ & \hline \end{aligned}$
1	A	$\begin{aligned} & \mathrm{AD} \\ & \mathrm{AE} \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 8+15=23 \\ & 6+13=19^{*} \end{aligned}$
	B	$\begin{aligned} & \mathrm{BE} \\ & \mathrm{BF} \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 17+13=30 \\ & 9+11=20^{*} \end{aligned}$
	C	$\begin{aligned} & \mathrm{CD} \\ & \mathrm{CF} \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 10+15=25 \\ & 10+11=21^{*} \end{aligned}$
0	S	$\begin{aligned} & \hline \text { SA } \\ & \text { SB } \\ & \text { SC } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 11+19=30 \\ & 8+20=28^{*} \\ & 12+21=33 \end{aligned}$

Route: S - B - F - J - T
SC4 Maximax:

Stage	State	Action	Destination	Value
3	G	GT	T	8*
	H	HT	T	5*
	J	JT	T	6*
2	D	DH	H	$\max (10,5)=10^{*}$
	E	$\begin{aligned} & \text { EG } \\ & \text { EH } \\ & \text { EJ } \end{aligned}$	$\begin{gathered} \mathrm{G} \\ \mathrm{H} \\ \mathrm{~J} \end{gathered}$	$\begin{gathered} \max (9,8)=9^{*} \\ \max (8,5)=8 \\ \max (7,6)=7 \end{gathered}$
	F	$\begin{gathered} \mathrm{FH} \\ \mathrm{FJ} \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~J} \end{gathered}$	$\begin{gathered} \max (8,5)=8^{*} \\ \max (5,6)=6 \end{gathered}$
1	A	$\begin{aligned} & \hline \mathrm{AD} \\ & \mathrm{AE} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{E} \\ & \hline \end{aligned}$	$\begin{gathered} \max (8,10)=10^{*} \\ \max (6,9)=9 \end{gathered}$
	B	$\begin{aligned} & \mathrm{BE} \\ & \mathrm{BF} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{~F} \\ & \hline \end{aligned}$	$\begin{gathered} \max (17,9)=17^{*} \\ \max (9,8)=9 \end{gathered}$
	C	$\begin{aligned} & \text { CD } \\ & \text { CF } \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~F} \\ & \hline \end{aligned}$	$\begin{aligned} & \max (10,10)=10^{*} \\ & \max (10,8)=10^{*} \end{aligned}$
0	S	$\begin{aligned} & \text { SA } \\ & \text { SB } \\ & \text { SC } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & \max (11,10)=11 \\ & \max (8,17)=17^{*} \\ & \max (12,10)=12 \end{aligned}$

Question Number	Scheme					Marks
SC5 Minimin:						
	Stage	State	Action	Destination	Value	
	3	G	GT	T	8*	
		H	HT	T	5*	
		J	JT	T	6*	
	2	D	DH	H	$\min (10,5)=5^{*}$	
		E	EG	G	$\min (9,8)=8$	
			EH	H	$\min (8,5)=5^{*}$	
			EJ	J	$\min (7,6)=6$	
		F	FH	H	$\min (8,5)=5^{*}$	
			FJ	J	$\min (5,6)=5^{*}$	
	1	A	AD	D	$\min (8,5)=5^{*}$	
			AE	E	$\min (6,5)=5^{*}$	
		B	BE	E	$\min (17,5)=5^{*}$	
			BF	F	$\min (9,5)=5^{*}$	
		C	CD	D	min $(10,5)=5^{*}$	
			CF	F	$\min (10,5)=5^{*}$	
	0	S	SA	A	$\min (11,5)=5^{*}$	
			SB	B	min $(8,5)=5^{*}$	
			SC	C	$\min (12,5)=5 *$	

SC6 Working forwards S to T:

Stage	State	Action	Destination	Value
3	A	AS	S	11^{*}
	B	BS	S	8^{*}
	C	CS	S	12^{*}
2	D	DA	A	$\min (8,11)=8$
		DC	C	$\min (10,12)=10^{*}$
	E	EA	A	$\min (6,11)=6$
		EB	B	$\min (17,8)=8^{*}$
	F	FB	B	$\min (9,8)=8$
		FC	C	$\min (10,12)=10^{*}$
1	G	GE	E	$\min (9,8)=8^{*}$
	H	HD	D	$\min (10,12)=10^{*}$
		HE	E	$\min (8,8)=8$
		HF	F	$\min (8,10)=8$
	J	JE	E	$\min (7,8)=7^{*}$
		JF	F	$\min (5,10)=5$
0	T	TG	G	$\min (8,8)=8^{*}$
		TH	H	$\min (5,10)=5$
		TJ	J	$\min (6,7)=6$

Question		
Number	Scheme	Marks

SC7 Reversed States:

Stage	State	Action	Destination	Value
3	T	TG	G	8*
		TH	H	5*
		TJ	J	6*
2	G	GE	E	$\min (9,8)=8^{*}$
	H	HD	D	$\min (10,5)=5^{*}$
		HE	E	$\min (8,5)=5$
		HF	F	$\min (8,5)=5^{*}$
	J	JE	E	$\min (7,6)=6$
		JF	F	$\min (5,6)=5^{*}$
1	D	DA	A	$\min (8,5)=5$
		DC	C	$\min (10,5)=5^{*}$
	E	EA	A	$\min (6,8)=6^{*}$
		EB	B	$\min (17,8)=8^{*}$
	F	FB	B	$\min (9,5)=5$
		FC	C	min $(10,5)=5^{*}$
0	A	AS	S	$\min (11,6)=6$
	B	BS	S	$\min (8,8)=8^{*}$
	C	CS	S	$\min (12,5)=5$

Weight: 8 Route: S-B-E-G-T

