Edexcel Maths D2

Mark Scheme Pack

2003-2015

PhysicsAndMathsTutor.com

B1

Solutions

1. (a)

_	A(I)	$A(\mathrm{II})$
$B(\mathbf{I})$	3	-4
B(II)	-2	1
$B(\mathrm{III})$	-5	4

(b) e.g. matrix becomes

	A(I)	A(II)
<i>B</i> (I)	9	2
B(II)	4	7
B(III)	1	10

Defines variables (-including non-zero constants)

e.g. maximise
$$P = V$$

subject to $v - 9q_1 - 4q_2 - q_3 + r = 0$
 $v - 2q_1 - 7q_2 - 10q_3 + s = 0$
 $q_1 + q_2 + q_3 + t = 1$

OR

e.g.	minimise $P = x_1 + x_2 + x_3$ v	where $x_i = \frac{q_i}{v}$		
subject to	$9x_1 + 4x_2 - x_3 + r = 1$ $2x_1 - 7x_2 - 10x_3 + s = 1$		A2 ft, 1 ft, 0	4
0.0				

OR

e.g. maximise
$$P = V$$

 $v - 8q_1 - 3q_2 + R = 0$
 $v - 8q_1 - 3q_2 + S = 0$

[6]

2.	(a)	In the <i>practical</i> TSP each vertex must be visited <i>at least once</i>	B1	
		In the <i>classical</i> TSP each vertex must be visited <i>exactly once</i>	B1	2

(b)
$$AB, DF, DE$$
, (reject EF), $\begin{cases} FG \\ AC \end{cases} EH \begin{cases} DC \\ or \\ BE \end{cases}$ M1 A1


```
use CG (saving 40) giving new upper bound of 130 km;
Tour A B E H E D F G C A)
```

3.	(a)	(i)	Either rows then columns	giving
----	-----	-----	--------------------------	--------

	Ι	II	III	IV			Ι	II	III	IV		
С	0	22	16	4		С	0	4	0	4		
J	1	20	24	0	then	J	1	2	8	0	M1, A1, A1	3
N	1	18	18	0		Ν	1	0	2	0		
S	1	23	26	0		S	1	5	10	0		
I	T	3 lin	es only	v neede	ed	(or	T) least	t eleme	ent 1 so	•	
C	0	<u>1</u>	0	5		C	0	5	0	5		
J	0	1	7	0	or	J	0	2	7	0	M1, A1, A1	3
N	1	0	2	1		N	0	0	1	0		
S	0	4	9	0		S	0	5	9	0		

Alternative

(a)	(i)	or co	olumns	then row	es giving	
	Ι	II	III	IV		
С	1	2	0	6	(then no change)	
J	2	0	8	2	-	M1, A1
N	4	0	4	4		
S	0	1	8	0		
		3 lin	es only	v needed	and either row 1 or column 3	

[10]

3

2

		<u>if ro</u>	<u>w 1</u> : le	ast unc	overed 2		
	Ι	II	III	IV			
С	1	4	0	6			
J	0	0	6	0			
N	2	0	2	2			
S	0	3	8	0			
		<u>if co</u>	lumn 3	<u>:</u> least	uncovered 1		
	Ι	II	III	IV			
С	0	2	0	5			
J	1	0	8	1			
N	3	0	4	3			
S	0	2	9	0			
		Ther	least	uncove	red 1 M1 A1	l M1 A1	6
	Ι	II	III	IV			
С	0	3	0	5			
J	0	0	7	0			
Ν	2	0	3	2			
S	0	3	9	0			
	(ii)	C – 1 83 m	III, J – ninutes	I or IV ∴ <u>11.2</u>	, <i>N</i> – II, <i>S</i> – IV or I 23 a.m.	M1 A1 M1 A1	4
(b)	Subtre.g. s	racting subtrac	g all en ctions f	tries fro From 36	pm some $n \ge 36$ (stated)	M1	
	Ι	II	III	IV			
С	24	2	8	20			
J	23	4	0	24	Μ	1, A2,1,0	3
Ν	21	4	4	22			
S	25	3	0	26			
	DI						
(a)	Playe	er A: ro er B: c	ow mii olumn	maxim	s are -1 , 0, -3 so maximin choice is play II nums are 2, 3, 3 so minimax choice is play I	MI AI M1 A1	4
(b)	Since	e A's n	naximi	n (0) ≠	B's minimax (2) there is no stable solution	B1	1
(c)	For p	olayer	A row	II domi	inates row III, so A will now play III	B2, 1, 0	2
(d)	Let A If B If B If B If B	A play plays I plays I plays I plays I	I with , A's e I, A's e II, A's e	probab xpected expecte expecte	ility p and II with probability $(1 - p)$ d winnings are $2p + (1 - p) = 1 + p$ ed winnings are $-p + 3(1 - p) = 3 - 4p$ M1, ed winnings are $3p$	A2, 1, 0	3

4.

[13]

5.

(a)

(b)

100		n D	()								
Exiting route $CF \ \theta = 4$						Exiti	ng rou	ite AE	M1 A1 ft		
	D	Е	F				D	E	F		
А	2		4			Α	6		0		
В	4	1				В		5		A1	3
С		8				С		4	4		
$S_A = 0$	$S_{B} =$: 0, <i>S</i>	c = -	-10		$S_A =$	$0, S_B =$	= 30, §	$S_{C} = 20$		
$D_D = 2$	20, D	E = 3	0, D	F = 10		$D_D =$	20, <i>L</i>	$\boldsymbol{o}_E = 0,$	$D_F = 1$	0	
$I_{AE} = 1$	10, I_{B}	F = 3	0,			$I_{AE} =$	40, I _I	BD = -3	30,		
$I_{CD} =$	$0, I_{CF}$	= 30)			$I_{BF} =$	20, I ₀	$C_D = -2$	30	M1 A1 A1	
∴ opt	imal,	cost	£35()		CD(+	$\rightarrow A$	AD(-)	$\rightarrow AF($	$+) \rightarrow CF(-)$	
_						$\theta = 4$					
							D	Е	F		
						А	2		4		
						В		5			
						С	4	4			

[14]

$$S_A = 0, S_B = 0, S_C = -10$$

 $D_D = 20, D_E = 30, D_F = 10$
 $I_{AE} = 10, I_{BD} = 0, I_{BF} = 30, I_{CF} = 30$
 \therefore optimal, cost £350 A1 7

b)							
Stage	Demand	State	Action	Destination	Value]	
(2) Oct	(5)	(1)	(4)	(0)	(590 + 200 = 790)		
		(2)	(3) (4)	(0) (1)	280 + 200 = 480 630 + 240 = 870	M1 A1	
		(3)	(2) 3 4	0 1 2	320 + 200 = 520 320 + 240 = 560 670 + 80 = 750	M1 A1	
3 Sept	3	0	4	1	550 + 790 = 1340	M1 A1	
		1	3 4	1 2	240 + 790 = 1030 590 + 480 = 1070	M1 A1 ft	
4 Aug	3	0	3 4	0 1	200 + 1340 = 1540 550 + 1030 = 1580	M1 A1 ft	
			· · ·			-	
Mon	th Aug	gust	September	October	November	M1 A1	
	$st = \pounds 1540$)	4	4	2	A1 ft	
c) P =	rofit per cy 18 200	cle = 13	× 1400	Cost of Kim' Cost of produ	s time = $\pounds 2000$ action = $\pounds 1540$	B1	
:	Total prof ± 1460	ït = 18 2	200 - 3540			M1 A1 ft	

6.	(a)	Total cost = $2 \times 40 + 350 + 200 = \text{\pounds}630$
	()	

[14]

[18]

7.	(a)	Adds <i>S</i> and <i>T</i> and arcs $SS_1 \ge 45, SS_2 \ge 35, T_1T \ge 24, T_2T \ge 58$	M1 A1	2
	(b)	Using conservation of flow through vertices $x = 16$ and $y = 7$	B1 B1	2
	(c)	$C_1 = 86, C_2 = 81$	B1 B2	3

6

[18]

A1 A1

(e) e.g.:

(f)

(d)

8. (a) $2x + 3y + 4z \le 8$ $3x + 3y + z \le 10$ P = 8x + 9y + 5z

B1 B1 B1

> M1 A1

> M1 A1

> M1 A1

A1

8

3

3

		\downarrow	r	T	1	1	7
b.v	x	У	z	r	S	Value	
r	2	3	4	1	0	8	
S	3	3	1	0	1	10	
Р	-8	-9	-5	0	0	0	
	\downarrow						
b.v	x	у	z	r	S	Value	
у	$\frac{2}{3}$	1	$\frac{4}{3}$	$\frac{1}{3}$	0	3	$R_1 \div 3$
S		0	-3	-1	1	2	$R_2 - 3R_1$
Р	-2	0	7	3	0	24	$R_3 + 9R_1$
L	1		L		•	•	2
b.v	x	у	Z.	r	S	Value	
у	0	1	$\frac{10}{3}$	1	$-\frac{2}{3}$	$\frac{4}{3}$	$R_1 - \frac{2}{3}R_2$
x	1	0	-3	-1	1	2	
л	0	0	1	1	2	28	$R_3 + 2R_2$

z = 0, r = 0, s = 0

[14]

Solutions

[4]

1.	(a)	A game in which the gain to one player is equal to the loss of the other	B2, 1, 0	2
	(b)	If there is a <u>stable solution(s)</u> a_{ij} in a game, the <u>location</u> of this stable solution is called the saddle point. It is the point(s) where row maximum = column maximum.	B2, 1, 0	2

2. Subtract all terms from some $n \ge 35$, e.g.35

4	11	3	0
19	25	16	13
16	21	15	14
17	20	14	12

Reducing rows then columns

2	4	2	0
4	5	2	0
0	0	0	0
3	1	1	0

_____ M

Minimum uncovered 1

1	3	1	0
3	4	1	0
0	0	0	1
2	0	0	0

Minimum uncovered 1

0	2	0	0
2	3	0	0
0	0	0	2
2	0	0	1

M1 A1 ft 3

B1

M1 A1 ft

e.g. matching	D - A		Α		M		S	A1 ft
	H-S	or	S	or	S	or	М	
	K - M		L		Α		Α	
	T - L		М		L		L	A1 4

Total 88 points

4.

3.	(a)	(i) Minimum connector using Prim: AC, CB, CD, CE Length = $98 + 74 + 82 + 103 = 357$ So upper bound = $2 \times 357 = 714$	M1 A1 {1, 3, 2, 4, 5} M1 A1	4
		(ii) $A (98) C (74) B (131) D (134) E (115) A$ Length = 98 + 74 + 131 + 134 + 115 = 552	M1 A1 A1	3
	(b)	Residual minimum connector is AC, CB, CD Length 254 Lower bound = $254 + 103 + 115 = 472$	M1 A1 M1 A1	4

	Lower bound = $254 + 103 + 115 = 472$	M1 A1
(c)	$472 \leq \text{solution} \leq 552$	B1 ft

(a) row min $\begin{pmatrix} -4 & -1 & 3 \\ 2 & 1 & -2 \end{pmatrix} -4$ $2 & 1 & -2 \end{pmatrix} -2 \leftarrow \max$ Col. max 2 1 3 M1 A1 \uparrow min $-2 \neq 1 \therefore \text{ not stable}$ A1 3

(b) Let Emma play R_1 with probability pIf Freddie plays C_1 , Emma's winnings are -4p + 2(1-p) = 2 - 6p C_2 , Emmas winnings are -p + 1(1-p) = 1 - 2p M1 A1 C_3 , Emma's winnings are 3p - 2(1-p) = -2 + 5p A1 3

[9]

[12]

So Emma should play R_1 with probability $\frac{4}{11}$ R_2 with probability $\frac{7}{11}$ A1 ft 3 The value of the game is $-\frac{2}{11}$ to Emma

(c) Value to Freddie
$$\frac{2}{11}$$
, matrix $\begin{pmatrix} 4 & -2 \\ 1 & -1 \\ -3 & 2 \end{pmatrix}$ B1 ft B1, B1 3

[14]

[18]

2

5.	(a)	Idea of many supply and demand points and many units to be moved. Costs are variable and dependent upon the supply and demand points, need to minimise costs. <u>Practical</u> costs proportional to number of units	B2, 1, 0
		costs proportional to number of units	

(b) Supply = 120 Demand = 110 so not balanced B1 1

(c) Adds 0, 0, 0, 10 to column
$$f$$
 M1 A1
 $d e f$ M1 A1

(d)	$R_1 = 0$	$R_2 = -1$	$R_3 = -3$		
	$k_1 = 5$	$k_2 = 7$	$k_3 = 3$	M1 A1	
	Ae = 3 - 6	0 - 7 = -4			
	Af = 0 - 0) - 3 = -3		M1 A1 ft	
	Bf = 0 + 1	1 - 3 = -2		A1 ft	5
	Cd = 2 +	3 - 5 = 0			

6.	(a)	Stage – Number of weeks to finish	B1	
		State – Show being attended	B1	
		Action – Next journey to undertake	B1	3

(b) <u>eg</u>

Stage	State	Action	Value		
1	F G H	F – Home G – Home H – Home	500 - 80 = 420 * 700 - 90 = 610 * 600 - 70 = 530 *	M1 A1	
2	D	DF DG DH	1500 - 200 + 420 = 1720 1500 - 160 + 610 = 1950 * 1500 - 120 + 530 = 1910	M1 A1ft A1 ft	
	Ε	EF EG EH	1300 - 170 + 420 = 1550 1300 - 100 + 610 = 1810 * 1300 - 110 + 530 = 1720	A1	
	А	AD AE	900 - 180 + 1950 = 2670 * 900 - 150 + 1810 = 2560	M1 A1 ft	
3	В	BD BE	800 - 140 + 1950 = 2610 * 800 - 120 + 1810 = 2490	A1 ft	
	С	CD CE	1000 - 200 + 1950 = 2750 * 1000 - 210 + 1810 = 2600	A1	
4	Home	Home $-A$ Home $-B$ Home $-C$	$\begin{array}{rrr} -70 &+ 2670 = 2600 \\ -80 &+ 2610 = 2530 \\ -150 + 2750 = 2600 \\ \end{array}$	M1 A1	12

(c) Home
$$A - D - G$$
 B2 ft 1 ft 0
Total profit £2 600 B1 ft 3

7. (a) x = 9, y = 16

- (b) Initial flow = 53 Either finds a flow-augmenting route or demonstrates not enough saturated arcs for a minimum cut B1 B1 2
- (c)

M1A1 2

A1

B1 B1

2

[18]

IFDA – 2 max flow – 64

A1 B1 3

M1 A1 2

(e)	Max flow – min cut	M1	
	Finds a cut GC, AF, DF, DJ, EI, EH value 64	A1	2
	Note: must not use supersource or supersink arcs.		

(b)
$$p = 63, x = 0, y = 7, z = 0, r = \frac{9}{2}, s = \frac{2}{3}, t = 0$$
 M1, A1, A1, 3

(c)
$$\frac{63}{7} = 9$$
 M1, A1 2

9. (a)
$$C_1 = 7 + 14 + 0 + 14 = 35$$

 $C_2 = 7 + 14 + 5 = 26$
 $C_3 = 8 + 9 + 6 + 8 = 31$
B1
B1
B1
B1
B1
B1

c

A1

3

- BFHJL - 2 Thus choose option 2 add FH capacity 3. [13]

[6]

10.	(a)	Maximise	$\mathbf{P} = 50x + 80y + 60z$	B1
		subject to	$x + y + 2z \le 30$	
			$x + 2y + z \le 40$	
			$3x + 2y + z \le 50$	B3, 2, 1,0 4
		where	$x, y, z \ge 0$	

(b) Initialising tableau

B1ft M1

	bv	x	у	Z.	r	S	t	value	
-	r	1	1	2	1	0	0	30	
	S	1	2	1	0	1	0	40	
	t	3	2	1	0	0	1	50	
-	р	-50	-80	-60	0	0	0	0	
se	s correc	t pivot, o	livides R	₂ by 2				А	1 ft

chooses correct pivot, divides R_2 by 2A1 ftstates correct row operation $R_1 - R_2$, $R_3 - 2R_2$, $R_4 + 80R_2$, $R_2 \div 2$ A1

(c) The solution found after one iteration has a stack of 10 units of black per day

B2, 1, 0 2

4

(d) (i)

bv	x	у	Z,	r	S	t	value	
r	1/2	0	3/2	1	$-\frac{1}{2}$	0	10	
У	1/2	1	$\frac{1}{2}$	0	$\frac{1}{2}$	0	20	(given)
t	2	0	0	0	-1	1	10	
p	-10	0	-20	0	40	0	1600	
bv	x	у	Z.	r	S	t	value	
Z.	$\frac{1}{3}$	0	1	2/3	$\frac{1}{3}$	0	$6^{\frac{2}{3}}$	
у	$\frac{1}{3}$	1	0	_1/3	² / ₃	0	$16^{\frac{2}{3}}$	
t	2	0	0	0	-1	1	10	
р	$-3^{\frac{1}{3}}$	0	0	$13^{\frac{1}{3}}$	$33^{\frac{1}{3}}$	0	1733 1⁄3	_
$R_1 \div \sqrt[3]{2}$							M1	A1
$R_2 - \frac{1}{2}$ $R_3 - no$ $R_4 + 201$	R ₁ change R						M1	A1 4

(ii) not optimal, a negative value in profit rowB1ft(iii) x = 0 $y = 16\frac{2}{3}$ $z = 6\frac{2}{3}$ M1 A1ft $p = \pounds 1733.33$ r = 0, s = 0, t = 10A1ft

[18]

Solutions

1. (a)

	D	Е	F
А	20	4	
В		26	6
С			14

(b)
$$S_A = 0$$
 $S_B = -1$ $S_C = 7$ M1
 $D_P = 21$ $D_E = 24$ $D_F = 18$ A1

$$I_{13} = I_{AF} = 16 - 0 - 18 = -2$$

$$I_{21} = I_{BD} = 18 + 1 - 21 = -2$$

$$I_{31} = I_{CD} = 15 - 7 - 21 = -13 (*)$$

$$I_{32} = I_{CE} = 19 - 7 - 24 = -12$$

$$A1 \text{ft}$$

$$J_{32} = I_{CE} = 19 - 7 - 24 = -12$$

(c)	eg Cl	D(+) -	→ AD(-	$-) \rightarrow A$	$AE(+) \rightarrow BE(-) \rightarrow BF(+) \rightarrow CF(-)$	$\theta = 14 \text{ M1 A1ft}$
		D	Е	F		
	А	6	18			A1ft A1
	В		12	20	cost £1384	
	С	14				

2. (a)

Deleting F leaves r.s.t B 14

$$A \stackrel{13}{\xrightarrow{18}} C \stackrel{28}{\xrightarrow{6}} G$$

	•D	M1		
	r.s.t. length = $\underline{86}$	A1		
	s_0 lower bound = $86 + 16 + 19 = \underline{121}$	M1 a1	4	
	\therefore best L.B is 129 by deleting <i>C</i> (ft from choice)	B1 ft	1	
(b)	Add 33 to <i>BF</i> and <i>FB</i>	B1		
	Add 31 to DE and ED	B1	2	
(c)	Tour visits each vertex order correct using table of least distances	M1 A1		

(c) Tour, visits each vertex, order correct using table of least distances. M1 A1
e.g. F C D A B E G F (actual route F C D C A B E G F)A1
upper bound of 138 km
A1 4

June 2005

[11]

[11]

3.	Let x_{ij} be <u>number</u> of units transported from <i>i</i> to <i>j</i> where $i \in \{W, X, Y\}$ and $j \in \{J, K, L\}$ warehouse supermarket	B1	1
	<u>objective</u> minimise "C" = $3x_{WJ} + 6x_{WK} + 3x_{WL} + 5x_{XJ} + 8x_{XK} + 4x_{XL} + 2x_{YJ} + 5x_{YK} + 7x_{YL}$	B1 B1	2
	subject to $x_{WJ} + x_{WK} + x_{UL} = 34$ $x_{XJ} + x_{XK} + x_{XL} = 57$ $x_{YI} + x_{YK} + x_{YI} = 25$	M1 A1	
	$x_{WJ} + x_{XY} + x_{YJ} = 20$ $x_{WK} + x_{XK} + x_{YK} = 56$ $x_{WL} + x_{XL} + x_{YL} = 40$	A1	3
	$x_{ij} \ge 0 \forall i \in \{W, X, Y\} \text{ and } j \in \{J, K, L\}$	B1	1

4.	(a)	The route from start to finish in which the arc of minimum	B2, 1, 0	
		length is as large as possible.		
		e.g. must be pratical, involve choice of route, have are 'cuts'.	B1	3

(b)

Stage	State	Action	Value		
1	Н	HK	18(*)	M1 A1	
	Ι	IK	19(*)		
	J	JK	21(*)		
2	F	FH	min (16,18) = 16		
		FI	$\min(23,19) = 19(*)$	M1 A1 A1	
		FJ	min (17,21) = 17		
	G	GH	min (20,18) = 18		
		GI	min (15,19) = 15		
		GJ	min (28,21) = 21(*)		
3	В	BG	$\min(18,21) = 18(*)$		
	С	CF	min (25,19) = 19(*)	M1 A1ft	
		CG	min (16,21) = 16		
	D	DF	min (22,19) = 19(*)		
		DG	min (19,21) = 19(*)		
	E	EF	$\min(14,19) = 14(*)$		
4	А	AB	min (24,18) = 18	A1ft	
		AC	$\min(25,19) = 19(*)$		
		AD	$\min(27,19) = 19(*)$		
		AE	$\min(23,14) = 14$		

(c) Routes A C F I K, A D F I K, A D G J K Alft Alft Alft 3

[14]

[7]

5.	(a)	To maximise, subtract all entries from $n \ge 30$	M1	
		e.g. 0 5 3 6	A2,1,0	3
		0 3 5 9		
		5000]		
		0 6 3 0		
		minimum uncovered element is 1: so 0 4 2 5	M1 A2ft1ft0	3
		or	M1	
		$\min_{n \in \mathbb{N}} e_{n} = 2$ $\min_{n \in \mathbb{N}} e_{n} = 2$		
			A2ft1ft0	3
		A-2 B-4 C-3 D-1 A-3 B-4 C-1 D-2	Ml Alft	2
	(b)	£1160 000	B2,1,0	2
	(c)	Gives other solution	M1 A1ft	2
6.	(a)	$SS_1 - 47$, $SS_2 - 87$, $T_1T - S_1$, $T_2T - T_3$ added to diagram 1	M1 A1	2
		If all 4 nos. zero then M0		
		M1 4 arcs added correctly + 4 numbers given		
		Al c.a.o. (diagram 1 only) penalise arrow errors	s here	
	(b)			
	(0)	$SS_1 \rightarrow 0$, $SS_2 \rightarrow 38$, $T_1T \rightarrow 8$, $T_2T \rightarrow 20$	M1 A1	2
		$\leftarrow 47 \qquad \leftarrow 49 \qquad \leftarrow 43 \qquad \leftarrow 53$		
		$M1.4 \operatorname{arcs} 2 \operatorname{numbers} \operatorname{and} 2 \operatorname{arrows} \longleftarrow \operatorname{per} \operatorname{ar}$	C	
		Alcao		
	(\mathbf{c})	$e_{T} = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} D_{j} T_{ij} T_{j} T_{j} = 2$		
	(0)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1	
		$S S_2 C E D T_2 T - 10$	A4,3,2,1,0	
		S S_2 C E B D T_1 $T-4$		
		Maximum flow — 113	B1	6
		M1 2 correct routes + flows found (flow > 10 gets routes <u>only</u> if clearly repeated from new ones)	s M0) (condone ini	itial f.a.
		A4 all flows + routes to 15 more <u>or f</u> low increase 17 more	ed above	
		$A2 \ge 3$ flows + routes to 11 more <u>or</u>		
		B1 113 c.a.o.		

[15]

(d)	e.g. M1 A1 2	
	A 17 T_1 T_1	
	S_1 25 10 T_2 10 T_2	
	S_2 C 15 15 C 15 15 C 15 15 C 15 15 15 15 15 15 15 15	
	M1 consistent flow of 101(*), complete clear (doesn't need to ft from (c)) A1 correct flow of 113 including arrows	
(e)	Max flow – min cut theorem; cut AT_1 , AD , S_1B , S_2B , BC , CE M1 A1 2 M1 flow of 113 + cut attempted + max flow – min cut theorem referred to (3 out of 4)	
(f)	Al c.a.o. Idea of a <u>directed</u> flow along arcs; from S to T; through a system/network; practical B2 all 4 bits there B1 2 out of 4 there	
		[16]
(a)	A zero-sum game is one in which the sum of the gains for all players B1 1 is zero. (o.e.)	
(b)	$I \qquad II \qquad III \\ I \qquad 5 \qquad 2 \qquad 3 \qquad \min 2 \\ II \qquad 3 \qquad 5 \qquad 4 \qquad \min 3 \leftarrow \max \qquad M1 \text{ A1} \\ \max 5 \qquad 5 \qquad 4 \\ \uparrow \\ \min \qquad min \qquad M1 \text{ A1}$	
	Since $3 \neq 4$ not stable A1 3	
(c)	Let A play I with probability p Let A play II with probability $(1 - p)$	
	If B plays I A's gains are $5p + 3(1-p) = 2p + 3$ If B plays II A's gains are $2p + 5(1-p) = 5 - 3p$ If B plays III A's gains are $3p + 4(1-p) = 4 - p$ M1 A1 2	

7.

Intersection of
$$2p + 3$$
 and $4 - p \Rightarrow p = \frac{1}{3}$ M1 A1ft 2

: A should play I
$$\frac{1}{3}$$
 of time and II $\frac{2}{3}$ of time; value (to A) = $3\frac{2}{3}$ A1ft A1ft 2

(d) Let B play I with probability
$$q_1$$
,
II with probability q_2 and

III with probability
$$q_3$$
 B1
e.g. Let $x_1 = \frac{q_1}{v}$ $x_2 = \frac{q_2}{v}$ $x_3 = \frac{q_3}{v}$ M1

Maximise
$$P = x_1 + x_2 = x_3$$
 A1
subject to $5x_1 + 2x_2 + 3x_3 \le 1$

$$3x_1 + 5x_2 + 4x_3 \le 1$$
 A2,1,0 5

$$x_1, x_2, x_3 \ge 0$$

8.

(a)

Alt 1
e.g.
$$\begin{bmatrix} -5 & -3 \\ -2 & -5 \\ -3 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 \\ 4 & 1 \\ 3 & 2 \end{bmatrix}$$

maximise $P = V$
subject to $v - q_1 - 4q_2 - 3q_3 \le 0$
 $v - 3q_1 - q_2 - 2q_3 \le 0$
 $v, q_1, q_2, q_3 \ge 0$
 $or = 1$

r, *s* and *t* are unused amounts of bird seed (in kg), suet blocks and peanuts (in kg) that Polly has at the end of each week after shehas made up and sold her packs

B2,1,0 2

B2 Ref to "unused" "bird seed, suet blocks & peanuts" B1 Ref to "unused" <u>or</u> bird seed etc <u>or</u> muddled explanation. "bad" gets B1 must engage with context

(b)							I		
b.v.	X	у	z	r	S	t	value	_	
Z.	$\frac{2}{5}$	$\frac{1}{2}$	1	$\frac{1}{10}$	0	0	14	$R_{1}\div 10$	M1 A1
S	$\left(\frac{2}{5}\right)$	-1	0	$-\frac{2}{5}$	1	0	4	$R_2 - 4R_1$	M1

[17]

t	$-\frac{1}{5}$	$\frac{1}{2}$	0	$-\frac{3}{10}$	0	1	18	$R_3 - 3R_1$	A2ft, 1ft, 0	5
р	-90	-25	0	65	0	0	9100	$R_4 + 650R_1$		
(c)	x = 0 $y =$	M_{A} AI M_{A} M_{A} M_{A} $A2$ On Pe $= 0$ M_{A} $b.v$ An AI AI	l corr pivol lft con n zerc here r ft non error nalise z = 14 l 3 va y neg ft all ft at l	rect pive row co rrect ro $ro r 1$ te row not row not 	of y = 0 y = 0	e c.a.a eratio orrec MO vs co ly = 4 d - n t on t con t (cond) on s <u>used</u> ons <u>used</u> tt in each rrect; –1 nly. t = 18 ust have ableau. 1 ft but a done P =	(all 3) – at led row. each error ft p = £91 completed sccept 9100 9100ft)	<i>nst 1</i> M1 A2ft, 1ft, 0	3
(d)	p – 90x –	$-2\sqrt{y}$ M pro Al	+ 65 lft P, esent ft c.a.	r = 910 (–)90x, <u>and</u> one .o. (o.e.	00 (0.6) (-)22 e = si	e.) 5y, 6: gn	5r and 91	00 (or 91) all	M1 A1ft	2
(e)	<i>p</i> = 9100 So increa	+ 90x asing x B1 re-	+ 25y or y v ft stat arrar	v – 65r would in ting thang thang pr	ncrea t incr rofit e	se the reasir equat	e profit 1g x <u>or</u> y ion. Gene	would increas erous.	B1ft se profit, probably	3
(f)	The $\frac{2}{5}$ i	in the <i>x</i> B2 Ac B1	$ft = \frac{2}{5}$	mn and identif inged i ad" get.	2 nd (ied, x n last s B1,	s) ro colu tabl if ft t	w. mn and 2 eau heir "opt	2 nd (s) row. ional" tablea	B2ft, 1ft, 0 <i>u B1</i> .	2

[15]

<u>(b) Notes</u>

1. <u>Wrong pivot</u> chosen in col 2 (–usually 4) M0 then for M1A2ft

(a)								
b.v.	x	у	z	r	S	t	value	
r	-1	$2\frac{1}{2}$	0	1	$-2\frac{1}{2}$	0	-10	$R_1 - 10R_2$
z	$\frac{1}{2}$	$\frac{1}{4}$	1	0	$\frac{1}{4}$	0	15	$R_2 \div 4$
t	$-\frac{1}{2}$	$\begin{pmatrix} 1 \\ \hline 4 \end{pmatrix}$	0	0	$-\frac{3}{4}$	1	15	R_3-3R_2
р	-25	$-187\frac{1}{2}$	0	0	162 $\frac{1}{2}$	0	9750	$R_4 + 650R_2$
					2			

(b)												
b.v.	х	ç.	У	Z.	r	S		t	V	alue		
r	$\frac{2}{3}$	-	$-1\frac{2}{3}$	0	1	0		$\frac{-10}{3}$	-	-60	$R_1 - 10^{-10}$	R ₃
S	$\frac{2}{3}$	-	$-1\frac{2}{3}$	0	0	1		$\frac{-4}{3}$	-	-20	$R_2 - 4R$	-3
Z,	G	Ð	$\frac{2}{3}$	1	0	0		$\frac{1}{3}$		20	$R_3 \div 3$	
р	-13	$3\frac{1}{3}$	$83\frac{1}{3}$	0	0	0	2	$16\frac{2}{3}$	13	3000	$R_4 + 65$	$0R_3$
2. 1	MISRI	EADS -	- use col	l x oi	col •	v (–2	2 A	marl	ks if e	arned)		
(a) -										,		
b.v.	x	у	Z.	r	s		t	va	alue			
r	0	3	2	1	-2	2	0	-	20	$R_1 - $	$4R_2$	
x	1	$\frac{1}{2}$	2	0	$\frac{1}{2}$		0		30	$R_2 \div$	2	
t	0	$1\frac{1}{2}$	1	0	$-\frac{1}{2}$	-	1		30	R ₃ –	R_2	
р	0	-175	50	0	17	5	0	10	500	$R_4 +$	350R ₂	
	1											
(b)												
b.v.	x	у	z		r	\$		t	valu	e		
у	$\frac{4}{5}$	1	2	-	$\frac{1}{5}$	0		0	28	R	₁ – 5	
\$		0	2	_	$\frac{1}{5}$	1		0	32	R	$_{2} - R_{1}$	
t	$-\frac{3}{5}$	0	-1	_	$\frac{2}{5}$	0		1	4	R	$_{3} - 2R_{1}$	
р	-70	0	50	7	0	0		0	9800) R	$_{4} + 350 R_{2}$	2
(a) S	SADT	- 8	SCET	- 11		SBF	Т–	.9				B2, 1, 0
(b)												
			$A \xrightarrow{8}$									
		8				$\overline{\ }$	×8					
	s 🧹		11	\searrow	\downarrow	\square	\rightarrow^{E}	\rightarrow	> T			B1
		K		/0	$\sum 1$	۱ 		11				
	-			<u> </u>		F		У				
			D	9		1						

9.

B1 3

	(iii) Max flow – min cut theorem	M1	
	cut AD, CD, DE, ET, CF, BC, SB ie $\{S \land C \in \} \{B \land D \in T\}$	A2, 0	3
(d)	Idea of a <u>directed</u> flow through a <u>system</u> of arcs from <u>S to T</u>	B1	1
	<u>practical</u>		

[14]

January 2006

Solutions

1.

To maximise, subtract all entries from <i>n</i> a e.g.	≥ 278	M1	
$\begin{bmatrix} 11 & 6 & 2 & 17 \\ 14 & 7 & 0 & 15 \\ 11 & 5 & 3 & 15 \\ 17 & 9 & 4 & 21 \end{bmatrix}$		A1	2
9401514701582012135017	then columns $\begin{bmatrix} 1 & 2 & 0 & 3 \\ 6 & 5 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ 5 & 3 & 0 & 5 \end{bmatrix}$	M1 A1ft A1ft	3
		M1 A1ft A1	3
or Min element = 1 $\begin{bmatrix} 0 & 0 & 0 & 1 \\ 5 & 3 & 0 & 1 \\ 1 & 0 & 2 & 0 \\ 4 & 1 & 0 & 3 \end{bmatrix}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1ft A1ft	3
then $-$ min element 1 $\begin{bmatrix} 0 & 0 & 1 & 1 \\ 4 & 2 & 0 & 0 \\ 1 & 0 & 3 & 0 \\ 3 & 0 & 0 & 2 \end{bmatrix}$ optimal	So $A - H$ H B - P or S C - S I D - I P (both £1077)	M1 A1	2

[13]

2. e.g.

Stage	State	Action	Dest	Value
1 (Sept)	$\begin{pmatrix} 2\\1\\0 \end{pmatrix}$	2 3 4	0 0 0	200 + 200 = 400 *200 + 100 = 300 *200 = 200 *
2 (Aug)	2	5 4 3 5 4	2 1 0 1 0	200 + 200 + 500 + 400 = 1300 200 + 200 + 300 = 700 200 + 200 + 200 = 600 * 200 + 100 + 500 + 300 = 1100 200 + 100 + 200 = 500 *
	0	5	0	200 + 500 + 200 = 900 *
3 (Jul)	2	5	0	200 + 200 + 500 + 900 = 1800 *
1	2	3	2	200 + 200 + 1800 = 2200 *
(Jun)	1	4	2	200 + 100 + 1800 = 2100 *
	0	5	2	200 + 500 + 1800 = 2500 *
5	0	5	2	200 + 500 + 2200 = 2900
(May)	1	4	2	200 + 2100 = 2300 *
	0	5	2	200 + 2500 = 2700 *
produ	Month ction scl Co	hedule st £2300	May 4	June July August September M1 A1ft 4 5 5 4 A1ft

3.	Let x_{ij} be	the number of units transported from i to j , i	n 1000 litres	
	whe	re $i \in \{F, G, H\}$ and $j \in \{S, T, U\}$	B2, 1, 0	2
	Minimise	$C = 23 x_{fs} + 31 x_{fft} + 46 x_{fu} +$	B1	
		$35 x_{gs} + 38 x_{gt} + 51 x_{gu} +$	B1	2
		$41 x_{\rm hs} + 50 x_{\rm ht} + 63 x_{\rm hu}$		
			Unbalanced	

$x_{\rm fs} + x_{\rm ft} + x_{\rm fu} \le 540$			
$x_{\rm gs} + x_{\rm gt} + x_{\rm gu} \le 789$		M1	
$x_{\rm hs} + x_{\rm ht} + x_{\rm hu} \le 673$		A1	
$x_{\rm fs} + x_{\rm gs} + x_{\rm hs} \le 257$	}		
$x_{\rm ft} + x_{\rm gt} + x_{\rm ht} \le 348$	} accept = here	A1	3
$x_{\rm fu} + x_{\rm gu} + x_{\rm hu} \le 412$	}		
$x_{ij} \ge 0$		B1	1
	$\begin{aligned} x_{\rm fs} + x_{\rm ft} + x_{\rm fu} &\leq 540 \\ x_{\rm gs} + x_{\rm gt} + x_{\rm gu} &\leq 789 \\ x_{\rm hs} + x_{\rm ht} + x_{\rm hu} &\leq 673 \\ x_{\rm fs} + x_{\rm gs} + x_{\rm hs} &\leq 257 \\ x_{\rm ft} + x_{\rm gt} + x_{\rm ht} &\leq 348 \\ x_{\rm fu} + x_{\rm gu} + x_{\rm hu} &\leq 412 \\ x_{ij} &\geq 0 \end{aligned}$	$ \begin{array}{l} x_{\rm fs} + x_{\rm ft} + x_{\rm fu} \leq 540 \\ x_{\rm gs} + x_{\rm gt} + x_{\rm gu} \leq 789 \\ x_{\rm hs} + x_{\rm ht} + x_{\rm hu} \leq 673 \\ x_{\rm fs} + x_{\rm gs} + x_{\rm hs} \leq 257 \\ x_{\rm ft} + x_{\rm gt} + x_{\rm ht} \leq 348 \\ x_{\rm fu} + x_{\rm gu} + x_{\rm hu} \leq 412 \end{array} \} \text{accept = here} \\ x_{ij} \geq 0 \end{array} $	$\begin{array}{ll} x_{\rm fs} + x_{\rm ft} + x_{\rm fu} \leq 540 & & \\ x_{\rm gs} + x_{\rm gt} + x_{\rm gu} \leq 789 & & M1 \\ x_{\rm hs} + x_{\rm ht} + x_{\rm hu} \leq 673 & & A1 \\ x_{\rm fs} + x_{\rm gs} + x_{\rm hs} \leq 257 & \\ x_{\rm ft} + x_{\rm gt} + x_{\rm ht} \leq 348 & \\ x_{\rm fu} + x_{\rm gu} + x_{\rm hu} \leq 412 & \\ \end{array} \right\} \text{accept = here} \qquad A1 \\ x_{\rm fu} + x_{\rm gu} + x_{\rm hu} \leq 412 & \\ \end{array}$

Accepted introduction of a dummy demand methods.

[12]

4.	(a)	Adds zero for costs in third column Adds 14 as the demand value	B1 B1	2
	(b)	The total supply is greater than the total demand	B2, 1, 0	2
	(c)	The solution would otherwise be degenerate	B2	1
	(d)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1 A1 A1	4
		JKLA $8-\theta$ $1+\theta$ B θ $13-\theta$ C $9-\theta$ $3+\theta$ Entering square BJExiting square AK	M1 A1ft	2
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1ft A1ft A1ft A1	5
5.	(a)	Row minimums $\{-2, -1, -4, -2\}$ row maximum = -1 Column maximums $\{1, 3, 3, 3\}$ column minimum = 1	M1 A1	
		Since $1 \neq -1$ not stable	A1	3
	(b)	Row 2 dominates Row 3 Column 1 dominates column 4	B1 B1	2
	(c)	Let A play row R, with probability P_1 , R_2 with probability P_2 and " R_3 " with probability P_3 .	B1	
		$ \begin{pmatrix} -2 & 1 & 3 \\ -1 & 3 & 2 \\ 1 & -2 & -1 \end{pmatrix} \xrightarrow{\text{eg}} \begin{pmatrix} 1 & 4 & 6 \\ 2 & 6 & 5 \\ 4 & 1 & 2 \end{pmatrix} $	M1	2
		e.g. maximise $P = V$	M1 A1	
		subject to $V - p_1 - 2p_2 - 4p_3 \le 0$ A4ft, 3:	ft, 2ft, 1ft, 0	6
		$V - 4p_1 - 6p_2 - p_3 \ \le \ 0$		
		$V - 6p_1 - 5p_2 - 2p_3 \ \le \ 0$		

[16]

$$p_1 + p_2 - p_3 \leq 1$$

V, p₁, p₂, p₃ ≥ 0

OR

e.g. Let
$$x_i = \frac{p_i}{v}$$
 \therefore $\frac{1}{v} = x_1 + x_2 + x_3$ M1
minimise $P = x_1 + x_2 + x_3$ A1

subject to
$$x_1 + 2x_2 + 4x_3 \ge 1$$

 $4x_1 + 6x_2 + x_3 \ge 1$
 $6x_1 + 5x_1 + 2x_3 \ge 1$
 $x_1 + x_2 + x_3 \ge 0$
A4ft 3ft 2ft 1ft 0 6

+ other equivalent methods.

[13]

7.	(a)	 A cut is a division of the vertices of a flow network into 2 s one containing the source(s) and the other containing the sin 	ets, nk(s). B1	
		(ii) A cut whose capacity is least	B1	2
	(b)	$C_1 = 1038, C_2 = 673$	B1, B2, 0	3
	(c)	e.g.		
		$\begin{array}{c} (318) \\ (318) \\ (104) \\ (355) \\ B \\ \underline{251} \\ E \end{array} \begin{array}{c} 214 \\ (0 \\ 208 \\ E \end{array} \begin{array}{c} 214 \\ G \\ 437 \\ 223 \\ F \\ 350 \\ 104 \\ 1$	M1A1A1	3
		O = saturated		
		- = compulsory		
	(d)	AC, CD, GF, FT	B1	1
	(e)	DE would not allow any further flow into EF	B1, 1, 0	2
		DG would cross both minimum cuts $-$ D can take extra flow, G ca accept it. Flow increased by <u>8.6</u> to <u>759</u> (accept either number)	in	

Solu	tions				June 2006
1.	(a)	Any part of an optimal p	ath is itself optimal	B1	
	(b)	The route chosen such tha as small as possible	t the maximum arc length is	B1	
	(c)	e.g. Maximising freight l when planning multiple B1 cao ("por B1 cao (not m B2 cao B1 cloze "Bo	by minimising fuel needed stage light aircraft journey t", "section", OK; "arc", "stage", a nin of max rate, not minimize largest d" gets B1	B2, 1, 0 activity", "event", not) arc)	
					[4]
2.	Let >	$x_{ij} = 1$ if worker does task, 0	otherwise	B1	
	when	$\mathbf{r} \mathbf{r} \mathbf{x}_{ij}$ indicates the arc from r	node i to node j i.e P, Q, R j E 1, 2, 3	B1	
		$x_{p1} + x_{p2} + x_{p3} = 1$	$x_{p1} + x_{q1} + x_{r1} = 1$	M1	
		$x_{q1} + x_{q2} + x_{q3} = 1$ and	$x_{p2} + x_{q2} + x_{r2} = 1$	A1	
		$x_{r1} + x_{r2} + x_{r3} = 1$	$x_{p3} + x_{q3} + x_{r3} = 1$	A1 3	
	Mini wher	timise, $C = 8x_{p1} + 7x_{p2} + 3x_p$ re C is in hundreds of pound B1 cao B1 defining v M1 at least 3 A1 cao 3 corr A1 cao 6 corr B1 Minimise	$x_{3} + 9x_{q1} + 5x_{q2} + 6x_{q3} + 10x_{r1} + 4x_{r2}$ s ariable – attempt equations – coefficients of one rect rect	+ 4x _{r3} B1, B1 2	
		B1 Minimise B1 cao (cond	one a slip) (- accept cost in pounds)		[7]

3. (a) Each activity must be visited once and then we return to the starting activity, this must be done in a minimum time B2, 1, 0 2 B2 cao – all 3 bits in the context B1 cloze 'Bod' is B1 (e.g. not in contect; just 'each activity once' – but not all 3; ...)

(b) 108 + 54 + 150 + 68 + 100 = 480 minutes (= 8 hours) M1 A1 2 M1 (maybe implicit) attempting to add 5 values A1 cao (c) Use nearest neighbour B F T C D B

M1 A1

3

64 + 68 + 60 + 54 + 150 = 396 minutes (67 hours) *M1 each vertex visited once – either NN or 2 x mst-shortcut (BD) A1 cao incl return to B (BFTCDB) A1 cao (396)*

(d)
$$e^{68}$$
 e^{60} e^{54} e^{54} e^{54}

CT, TF, CD (Prim or Kruskal)

64

M1 A1

B1

A1

182 +64 + 100 = 346 minutes M1 A1ft 4 *M1 Finding correct minimum spanning tree (maybe implicit) 182 sufficient A1 cao tree or 182 M1 adding 2 least arcs to B i.e. 100 and 64 only A1ft cao ft from their m.s.t. value i.e. 164 and their <u>tree</u> length*

4. (a) Adding $n \ge 20$ to table to give

	Н	Р	R	W
А	3	5	11	9
В	3	7	8	Ν
С	2	5	10	7
D	8	3	7	6

0 1 0 3 0 2 3 2 0 n 3 1 Either M1 A1ft or $\frac{2}{n-7}$ 0 - 3 - 0 - n - - 7 0 2 3 1 -0- \downarrow \downarrow $\begin{bmatrix} 0 & 0 & 2 & 1 \\ 1 & 3 & 0 & n-7 \\ 0 & 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 3 & 1 \\ 0 & 2 & 0 & n-8 \\ 0 & 1 & 3 & 0 \end{bmatrix}$ M1 A1ft 4 0 0 Ρ А Η

В	_	R or	R	cost £21 000
С	_	W	Н	

[11]

(b)	Not unique – gives the other solution
-----	---------------------------------------

[11]

5.

Stage	State	Action	Value		
	Н	HT	4*		
1	Ι	IT	3*		
	J	JT	12*		
	Κ	KT	20*	M1 A1	2
	D	DH	2 +4 = 6		
		DI	$4 + 3 = 7^*$	M1 A1	
ľ	Е	EH	3 + 4 = 7*		
2		EI	$4 + 3 = 7^*$		
ľ	F	FJ	10 + 12 = 22*		
		FK	-8 + 20 = 12		
ľ	G	GJ	10 + 12 = 22		
		GK	$17 + 20 = 37^*$	A1	
		AD	3 + 7 = 10		
	А	AE	2 + 7 = 9	M1 A1ft	
		AF	$-5 + 22 = 17^*$		
3		BD	3 + 7 = 10		
	В	BE	2 + 7 = 9		
		BF	$-6 + 22 = 16^*$		
	С	CF	8 + 22 = 30*		
		CG	-15 + 37 = 22	A1 ft	
		SA	2 + 17 = 19		
4	S	SB	3 + 16 = 19	M1 A1ft	2
		SC	$-10 + 30 = 20^{*}$		
ute S C	F J T £20	000		M1 A1	2

[12]

6. (a) Either e.g.

In an $n \times m$ problem, a degenerate solution occurs when the		
number of cells used is less than $(n + m - 1)$	B2,1,0	2
or e.g. when all the demand for one destination is satisfied by		

or e.g. when all the demand for one destination is satisfied by all the supply from a source, before the final demand and supplies are allocated B2 cao

B2 cao B1 cloze "bod" is B1 (b) If the total supply > total demand a dummy is used to absorb the excess
 B1 cao must (cannot decipher copy properly)

(c)
$$\begin{bmatrix} 15 \\ 1 & 11 & 0 \\ & & 17 \end{bmatrix}$$
 B1 cao total of five numbers B1 cao total of five numbers

B1

1

 $\begin{array}{lll} \mbox{(d)} & \mbox{Shadow costs} & \mbox{S}_A = 0 & \mbox{S}_B = -1 & \mbox{S}_C = -1 \\ & \mbox{D}_1 = 62 & \mbox{D}_2 = 49 & \mbox{D}_3 = 1 \\ & \mbox{Improvement indices} & \mbox{I}_{A2} = 47 - 0 - 49 = -2* \\ & \mbox{I}_{A3} = 0 - 0 - 1 = -1 \\ & \mbox{I}_{C1} = 68 + 1 - 62 = 7 \\ & \mbox{I}_{C2} = 58 + 1 - 49 = 10 \\ \end{array}$

Entering A2, exiting B2, $\theta = 0$

Improvement indices	$I_{B2} = 48 + 1 - 47 = 2$
	$I_{B3} = 0 + 1 - 0 = 1$
	$I_{C1} = 68 - 0 - 62 = 6 B1$
	$I_{C2} = 58 - 0 - 47 = 11$

∴ Optimal

7.

Cost	1497	units

(a)	e.g. Maximise F	B1		
	Subject to:	$V - 5p_1 - 3p_2 - 6p_3 + r = 0 \\$	M1	
		$V-7p_1-8p_2-4p_3+s=0\\$	A2,1,0	
		$V-2p_1-4p_2-9p_3+t=0\\$		
		$p_1 + p_2 + p_3 (+ u) = 1$		
	where V = value			
	$P_i \ge 0$ and r, s, t	B1	5	
	B1			
	MI			
	- a			
	A2			
	A1			

B1 defining variables

(b)	Not reducible and a three variable problem	B1
	B1 cao – both	

(c) e.g.

b v		V	P_1	P_2	P_3	r	S	t	u	val	ue		
r		1	-5	-3	-6	1	0	0	0	0	1	M1	
S		1	_7	-8	-4	0	1	0	0	0	1	A1	
t		1	-2	-4	-9	0	0	1	0	0	1		2
u		0	1	1	1	0	0	0	1	1			
Р	_	-1	0	0	0	0	0	0	0	0)		
b v	v	P ₁	P_2	P3	r	S	t	u	val	ue F	Row ops		
V	1	-5	-3	-6	1	0	0	0	0		$R_1 / 1$	M1 A1	
s	0	-2	-5	2	-1	1	0	0	0	I	$R_2 - R_1$	A1	
t	0	-3	-1	-3	-1	0	1	0	0	I	$R_3 - R_1$	B1ft	
u	0	1	1	1	0	0	0	1	1		R ₄ stet		4
Р	0	-5	-3	-6	1	0	0	0	0	F	$R_5 + R_1$		
b v	v	P ₁	P	2 I	P 3 1	•	s	t	u	value	Row op	S	
V	1	-11	-1	8 () –	2	3	0	0	0	$R_1 + 6R_1$	2 M1	A1ft

[14]

B1

4

P ₃	0	-1	$-\frac{5}{2}$	1	1⁄2	1⁄2	0	0	0	$R_2 / 2$	A1
t	0	0	$-\frac{17}{2}$	0	$-\frac{5}{2}$	$\frac{5}{2}$	1	0	0	$R_3 + 3R_2$	B1ft
u	0	2	$\frac{7}{2}$	0	$\frac{1}{2}$	$-\frac{1}{2}$	0	1	1	R_4-R_2	4
Р	0	-11	-18	0	-2	3	0	0	0	$R_5 + 6R_2$	

8. (a) 7x + 10y + 10z + r = 3600 6x + 9y + 12z + s = 3600 2x + 3y + 4z + t = 2400 P - 35x - 55y - 60z = 0B2,0

(b) (i)

b.v.	Х	У	z	r	S	t	value	Row ops	
r	2	$\frac{5}{2}$	0	1	$-\frac{5}{6}$	0	600	$R_1 - 10R_2$	A1
z	$\frac{1}{2}$	$\frac{3}{4}$	1	0	$\frac{1}{12}$	0	300	R ₂ ÷ 12	M 1
t	0	0	0	0	$-\frac{1}{3}$	1	1200	$R_3 - 4R_2$	Alft
Р	-5	-10	0	0	5	0	1800	$R_4 + 60R_2$	B1

(ii)

b.v.	х	у	Z	r	S	t	value	Row ops	M1	
У	$\frac{4}{5}$	1	0	$\frac{2}{5}$	$-\frac{1}{3}$	0	240	$R_1 \div \frac{5}{2}$	M1	
z	$-\frac{1}{10}$	0	1	$-\frac{3}{10}$	$\frac{1}{3}$	0	120	$R_2 - \frac{3}{4}R_1$	A1ft	
t	0	0	0	0	$-\frac{1}{3}$	1	1200	R ₃ stet	M1	
Р	3	0	0	4	$\frac{5}{3}$	0	20400	$R_4 + 10R_1$	A1	4
									-	

(c) P = 20400 x = 0 y = 240 z = 120 M1r = 0 s = 0 t = 1200 A2ft, A1ft, 0 [16]

4

5

2

(c) e.g.

M1 A3,2,1,0

> B1 5

M1A1 2

(e) Maximum flow = minimum cut Cut through AD, AC, BC and BE

S B C D T – 6

SBCDET-1S B A C D E T – 15

Max flow is 98

M1A1 2

[14]

4

3

Solutions

2.

1.	(a)	Adds 32 to $AB + BA$ (ACB)	B1
		47 to $AE + EA$ (ACDE)	B1
		32 to $CE + EC$ (CDE)	B1
		53 to $DG + GD (DCG)$	B1

(b)
$$A \ C \ B \ D \ E \ F \ G \ A$$

 $15 + 17 + 38 + 11 + 31 + 30 + 23 = 165$ miles M1A1
A1 3

(c)	e.g. BC, CD, DE, EF, FG $\stackrel{\text{B}}{\sim} \begin{array}{c} C \\ 17 \end{array} \stackrel{\text{D}}{\sim} \begin{array}{c} 21 \\ 11 \end{array} \stackrel{\text{E}}{\rightarrow} \begin{array}{c} F \\ 31 \\ 30 \end{array} \stackrel{\text{G}}{\rightarrow} \begin{array}{c} 31 \\ 30 \end{array}$	M1	
	weight of $RSMT = 110$ miles	A1	
	Lower bound = $110 + 15 + 23$	M1	
	= 148 miles	A1ft	4

$$\begin{bmatrix} 2 & -1 & 3 \\ 3 & 4 & -4 \end{bmatrix} \begin{array}{c} -1 & \leftarrow \\ 4 & 3 \end{array}$$
 M1A1
$$2 \neq -1 \therefore \text{ not stable}$$
A1

(b) Let Denis play 1 with probability
$$p$$

So he'll play 2 with probability $1 - p$

If Hilary plays 1 Denis wins: 2p - 3(1 - p) = 5p - 3 M1 If Hilary plays 2 Denis wins: -p + 4(1 - p) = 4 - 5p A2,1,0 If Hilary plays 3 Denis wins: 3p - 4(1 - p) = 7p - 4

4
4
2
4
7
4
7
4
7
4
5
p - 3
4
- 5
p
-2
-4
M1A2,1,0
5
p - 3 = 4 - 5p
10p = 7
p =
$$\frac{7}{10}$$

M1A1ft

Denis should play 1 with probability $\frac{7}{10}$ 2 with probability $\frac{3}{10}$

the value of the game is $\frac{1}{2}$ B1ftB1 10

[13]

[11]

(a)	$\begin{bmatrix} 66 & 101 & 85 & 36 \\ 66 & 98 & 74 & 38 \\ 63 & 97 & 71 & 34 \\ 67 & 102 & 78 & 35 \end{bmatrix}$		
	reducing then columns		
	$\begin{bmatrix} 30 & 65 & 49 & 0 \\ 28 & 60 & 36 & 0 \\ 29 & 63 & 37 & 0 \\ 32 & 67 & 43 & 0 \end{bmatrix} - \begin{bmatrix} 2 & 5 & 13 & 0 \\ 0 - 0 - 0 - 0 \\ 1 & 3 & 1 & 0 \\ 4 & 7 & 7 & 0 \end{bmatrix} -$	Μ	141
	$-\begin{bmatrix} 1 & 4 & 12 & 0 \\ 0 & - & 0 & - & 1 \end{bmatrix} -$	1,2	
	$-\begin{bmatrix} 0 & -2 & -0 & -0 \\ 3 & 6 & 6 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 3 & 11 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$	M1A1ftA1ft	
	$ \begin{bmatrix} 0 & 2 & 0 & 1 \\ 2 & 5 & 5 & 0 \end{bmatrix} $	M1A1ftA1ft	
	A – cutting B – stitching C – filling		
	D - dressing	A1	9
(b)	66 + 98 + 71 + 35 = 270 seconds	B1	1
(c)	$20 \times 98 + 66 + 71 + 35 = 2132$ seconds = 35 minutes 32 seconds	M1A1ft A1	3

4.

(a)

3.

	А	S	D	Seats
1			0	94
2			0	65
3			0	80
	18	200	21	

(b) total supply > total demand

(c)(d)

_		А	S	D
	1	18	76	
	2		65	
	3		59	21
S	S(1) = 0)	D(A	A) = 5

[13]

B2,1,0

B1

B1 M1A1ft 1
S(2) S(3)	= -0. = -0.	7 5	D(S) = 4 $D(D) = 0$.5 0.5						
$I_{1D} = I_{2A} = I_{2D} = I_{3A} = I_{3A} = I_{3A}$	= 0 - = 4.2 - = 0 + 0 = 4.6 -	0 - 0.5 = + 0.7 - 5 0.7 - 0.5 + 0.5 - 5	= -0.5 * = -0.1 = 0.2 = 0.1						A1	
	А	S	D			А	S	D		
1	18	$76 - \theta$	θ	Entering 1D	1	18	55	21	M1A1ft	
2		65		Exiting 3D	2		65		A1	7
3		$59 + \theta$	$21 - \theta$	$\theta = 21$	3		80			

(e)	S(1) = 0	D(A) = 4.9]	M1
	S(2) = -0.7	D(B) = 4.5		A1
	S(3) = -0.5	D(B) = 0		
	$I_{1A} = 5 - 0 - 4.9 =$	= 0.1		
	$I_{2D} = 0 + 0.7 - 0$	= 0.7		
	$I_{3A} = 4.6 + 0.5 -$	4.9 = 0.2		
	$I_{3D} = 0 + 0.5 - 0$	= 0.5		A1
	Optimal since all	II's ≥ 0		A1
	cost £902.70		M1	A1

[16]

6

3

1

M1A1 A1

B1

 $S \xrightarrow{22^{+}}_{R_{22}} B \qquad K \xrightarrow{10_{+}}_{R_{31}} S \xrightarrow{81}_{R_{22}} C \qquad L \xrightarrow{12}_{R_{12}} C$

(b) <u>103</u>

(c)	e.g.	SBEGILT-3	M1	
	Ū.	S B E D F K T – 5	A4,3,2,1,0	5
		S B E H J G D F K T – 4		
		SBEGDFILT-9		

(d) e.g.

Flow value <u>124</u> (given)

Max flow = min cut (e) cut through AB, BD, DE, EG, HJ

6. <u>Alt 1</u>

Game from R's point of view.

	A1	A2	A3			A1	A2	A3	
R ₁	-6	3	-5	Add 7	R ₁	1	10	2	B1, B1
R_2	2	-1	_4		R_2	9	6	3	
R_3	3	-2	1		R_3	10	5	8	
Let R j	play	1 with pr 2 with pr 3 with pr V = value	obability obability obability e of the	P_1 P_2 P_3 pame					B1
Maxin	nise P	$\mathbf{P} = \mathbf{V}$	·						B1
Subjec	et to	$V - P_1 - V_1 - 10P_1$ $V - 2P_1 - P_1 + P_2 + V_1 + P_2 + V_2$	$9P_2 - 10$ - $6P_2$ - $3P_2 - 8$ - $P_3 \le 1$, $P_3 \ge 0$	$P_3 \le 0$ $5P_3 \le 0$ $P_3 \le 0$ accept=					M1A1ft A1ft A1ft A1
<u>Alt 2</u>									

Add 4 to all entries R_1 R_2 R_3 10 2 1 A1 5 A2 1 6 9 A3 8 3

Let R play 1 with probability P_1 2 with probability P_2 3 with probability P_3	let V = value of game.	B1
Let $x_1 = \frac{P_1}{V}, x_2 = \frac{P_2}{V}, x_3 = \frac{P_3}{V}$		B1
Maximise $P = x_1 + x_2 + x_3$		B 1
Subject to $10x_1 + 2x_2 + x_3 \le 1$		M1A1ft

[14]

B1

8

M1A1

M1A1

A1

3

2

$x_1 + 5x_2 + 6x_3 \le 1$
$9x_1 + 8x_2 + 3x_3 \le 1$
$x_1, x_2, x_3 \ge 0$ accept $P_i \ge 0$

7. (a)

8.

	Stage	State	Acti	on	Destina	ation	1	Valu	ie			
		J	JY	7	Y			98*	<			
	1	K	KY	(Y			94*	<	B1		
		L	LY	[Y			86*	<			
		G	GJ	ſ	J		max	(79, 98) = 98*	M1		
			Gł	K	K		max	(98, 94) = 98*			
	2	Н	Hk	K	K		max	(95, 94) = 95	A1A1		
			HI		L		max	(72, 86) = 86*			
		Ι	IL	,	L		max	(56, 86) = 86*			
		С	CC	ĩ	G		max	(50, 98) = 98*			
		D	DC	3	G		max	(92, 98) = 98	M1		
	3		DF	I	Н		max	((81, 8	6) = 86*	A1A1ft		
		E	EH	I	Н		max	(89, 86) = 89*			
		F	FH	ł	H		max	(84, 86) = 86*			
			FI		Ι		max	(72, 86) = 86*			
		А	AC	2	C		max	(95, 98) = 98	M1		
			AI)	D		max	(86, 86) = 86*	A1ft		
	4	-	AF	3	<u> </u>		max	<u>(63, 89</u>) = 89			
		В	BE	3	<u> </u>		max	(88, 89) = 89			
			BF	÷.	F		max	(87,86) = 87*			
	5	Х	XA	A	A		max	(55, 86) = 86*	A1ft		
			XE	3	В		max	(85, 87) = 87			
	X A D H	L Y (mi	nimax	= 86))					M1A1ft	12	
(b)	X B F		Y (mi	inima	x = 87)				one	M1A1	2	
(a)	P-2x-4	4y - 3z =	0 (o.e	e.)						B2,0	2	
(b)	12x + 4y $9x + 6y +$ $5x + 2y -$	$+5z \le 24$ $3z \le 153$ $2z \le 171$	46 3							B1 B1 B1	3	
(c)	basic va	ariable	x	у	Ζ.	r	S	t	Value			
	r		12	4	5	1	0	0	246			
	S		9	6	3	0	1	0	153			
	t		5	2	-2	0	0	1	171			
	Р	•	-2	-4	-3	0	0	0	0			

[8]

[14]

		x	у	Z.	r	S	t	Value	Row operations			
	b.v.											
	r	6	0	3	1	$-\frac{2}{3}$	0	144	$R_1 - 4R_2$	M1A1		
	у	$\frac{3}{2}$	1	1⁄2	0	$\frac{1}{6}$	0	25.5	$R_2 \div 6$	M1A1ft		
	t	2	0	-3	0	$-\frac{1}{3}$	1	120	R_3-2R_2	B1ft		
	Р	4	0	-1	0	$\frac{2}{3}$	0	102	$R_{4} + 4R_{2}$			
									_			
	b.v.	x	у	Z	r	S	t	Value	Row operations			
	Z	2	0	1	$\frac{1}{3}$	$-\frac{2}{9}$	0	48	$R_1 \div 3$	M1A1		
	у	1⁄2	1	0	$-\frac{1}{6}$	5/18	0	1.5	$R_2 - \frac{1}{2}R_1$	M1A1		
	t	8	0	0	1	-1	1	264	$R_{3} + 3R_{1}$			
	Р	6	0	0	$\frac{1}{3}$	4/9	0	150	$R_4 + R_1$			
											9	
(d)	P = 15	0	x = 0	<i>y</i> =	= 1.5	z = 48	:			M1A1ft		
			r = 0	<i>s</i> =	= 0	<i>t</i> = 26	4			A1ft	3	
(a)	(Tho th	aird a	onstrair	$(t) t \neq$	0					D1ft	1	
(e)	(The u		onstran	n) <i>i ≠</i>	0					DIII	1	[18]
(a)	85									B1	1	
	4	10	104							D1 D1		
(b)	$c_1 = 14$	$10, c_2$	= 104							B1, B1	2	
(c)	e.g.											
	S B	D D	F F	H J G I	T T	_	4			M1A1		
	S B	D	F	C H	ΗI	<u> </u>	2			A1		
	S B S B	D D	F F	$\begin{array}{c} C & E \\ C & T \end{array}$	H J	Τ –	· 2			A1	5	
	5 0	ν	L	5 1			10				5	
(d)	Max fl	ow –	min cu	t theor	rem, flo	ow is 10	4, mir	n cut is c_2		M1A1	2	

9.

[10]

June 2008

Solu	tions				
1.	(a)	x = 9, y = 11 1B1: cao (permit B1 if 2 correct answers, but transposed) 2B1: cao	B1, B1	2	
	(b)	AC DC DT ET 1B1: correct (condone one error – omission or extra) 2B1: all correct (no omissions or extras)	B2,1,0	2	
	(c)	36 1B1: cao	B1	1	
	(d)	$C_1 = 49, C_2 = 48, C_3 = 39$ 1B1: cao 2B1: cao 3B1: cao	B1, B1, B1	3	
	(e)	e.g. SAECT 1B1: A correct route (flow value of 1 given)	B1	1	
	(f)	 maximum flow = minimum cut cut through DT, DC, AC and AE 1M1: Must have attempted (e) and made an attempt at a cut. 1A1: cut correct - may be drawn. Refer to max flow-min cut theorem 	M1A1	2	
		three words out of fours.			[11]
2.	(a)	 A walk is a finite sequence of arcs such that the end vertex of one arc is the start vertex of the next. 1B1: Probably one of the two below but accept correct relevant statement- bod gets B1, generous. 2B1: A good clear complete answer: End vertex = start vertex + finite. 	B2,1,0	2	
	(b)	 A tour is a walk that visits every vertex, returning to its stating vertex. 1B1: Probably one of the two below but accept correct relevant statement- bod gets B1, generous. 2B1: A good clear complete answer: Every vertex + return to start 	B2,1,0	2	
	From D1 A pa edge no ve A cy is the D2 A wa	a the D1 and D2 glossaries th is a finite sequence of edges, such that the end vertex of one in the sequence is the start vertex of the next, <u>and in which</u> <u>ertex appears more than once</u> . cle (circuit) is a closed path, ie the end vertex of the last edge e start vertex of the first edge. alk in a network is a finite sequence of edges such that the end x of one edge is the start vertex of the part			
	A wa	lk which visits every vertex, returning to its starting vertex, is called	a tour .		[4]

(b)	Adds 0, 0 and 5 to the dummy column	B2,1,0	2
(c)	L E D A 35 20 B 40 5	B1	1
(d)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1A1	
	$I_{BL} = 60 + 20 - 80 = 0$	A1 M1	3
	$ \begin{array}{c cccc} L & E & D \\ \hline A & 35 & 20 - \theta & \theta \\ B & 40 + \theta & 5 - \theta \end{array} $		
	$\theta = 5$; entering square is AD; exiting square is BD 80 70 0 L E D	A1ft B1ft	2
	0 A 35 15 5 -20 B 45		
	$I_{BL} = 60 + 20 - 80 = 0$ $I_{BD} = 0 + 20 - 0 = 20$	B1ft	2
(e)	Cost is (£) 6100	B1	1
(a)	Maximin : we seek a route where the shortest arc used is a great as possible.		

Minimax : we seek a route where the longest arc used is a small as possible.

B2,1,0 2 [13]

(b)

4.

Stage	State	Action	Dest.	Value	
	G	GR	R	132*	
1	Н	HR	R	175*	M1A1
	Ι	IR	R	139*	
	D	DG	G	min (175,132) = 132	M1A1
		DH	Н	min (160,175) = 160*	
2	Е	EG	G	min (162,132) = 132	
		EH	Н	min (144,175) = 144*	A1
		EI	Ι	min (102,139) = 102	
	F	FH	Н	min (145,175) = 145*	
		FI	Ι	min (210,139) = 139	
	А	AD	D	min (185,160) = 160*	
		AE	E	min (279,144) = 144	M1A1ft
3	В	BD	D	min (119,160) = 119	
		BE	E	min (250,144) = 144*	A1ft
		BF	F	min (123,145) = 123	
	С	CE	E	min (240,144) = 144	
		CF	F	$\min(170,145) = 145^*$	
	L	LA	Α	$\min(155,160) = 155^*$	Alft
4		LB	В	$\min(190,144) = 144$	
		LC	С	min (148,145) = 145	

(h)

		Maximin route: LADHR	A1ft	5
5.	(a)	For each row the element in column x must be less than the		
		element in column y.	B2,1,01	2
	(b)	Row minimum $\{2,4,3\}$ row maximin = 4 Column maximum $\{6,5,6\}$ column minimax = 5 $4 \neq 5$ so not stable	M1 A1	3
	(c)	Row 3 dominates row 1, so matrix reduces to $ \begin{array}{r} \hline M1 & M2 & M3 \\ \hline L2 & 4 & 5 & 6 \\ \hline L3 & 6 & 4 & 3 \end{array} $ Let Liz play 2 with probability p and 3 with probability (1- p) If Mark plays 1: Liz's gain is $4p + 6(1-p) = 6 - 2p$	B1	3
		If Mark plays 2: Liz's gain is $4p + 6(1 - p) = 6 - 2p$ If Mark plays 2: Liz's gain is $5p + 4(1-p) = 4 + p$ If Mark plays 3: Liz's gain is $6p + 3(1-p) = 3 + 3p$ 6 + 3 + 3p 6 + 3 + 3p 7 + 3p	M1 A1	3
		$0 \mid 0 \rightarrow $	B2,1,0 M1A1	2
		$p = \frac{2}{3}$	A1ftA1	4
	(d)	Liz should play row 1 – never, row 2 – $\frac{2}{3}$ of the time, row 3 – $\frac{1}{2}$ of the time		
		3		

and the value of the game is $4\frac{2}{3}$ to her.B1Row 3 no longer dominates row 1 and so row 1 can not be deleted.B1Use Simplex (linear programming).B1

[16]

[12]

Value £197 000

6.

[14]

[16]

8. (a)

		Value	t	S	R	Z	у	x	b.v.
		64	0	0	1	$\frac{5}{2}$	$\frac{7}{3}$	4	r
		16	0	1	0	0	3	1	S
		60	1	0	0	2	2	4	t
		0	0	0	0	-4	$-\frac{7}{2}$	-5	Р
	Row ops	Value	t	S	R	z	у	x	b.v.
M1A1	$R_1 - 4R_3$	4	-1	0	1	$\frac{1}{2}$	$\frac{1}{3}$	0	r
M1A1ftA1	$R_2 - R_3$	1	$-\frac{1}{4}$	1	0	$-\frac{1}{2}$	$\frac{5}{2}$	0	s
	$R_3 \div 4$	15	$\frac{1}{4}$	0	0	$\frac{1}{2}$	$\frac{1}{2}$	1	x
	$R_4 + 5R_3$	75	$\frac{5}{4}$	0	0	$-\frac{3}{2}$	-1	0	Р
	•								
	Row ops	Value	t	S	R	Z	у	x	b.v.
M1A1ft	$R_1 \div \ \frac{1}{2}$	8	-2	0	2	1	$\frac{2}{3}$	0	Z.
M1A1 9	$\begin{array}{c} R_2+\frac{1}{2}\\ R_1 \end{array}$	5	$-\frac{5}{4}$	1	1	0	$\frac{17}{6}$	0	S
	$\begin{array}{c} R_3 - \frac{1}{2} \\ R_1 \end{array}$	11	$\frac{5}{4}$	0	-1	0	$\frac{1}{6}$	1	x
	$\frac{R_4 + \frac{3}{2}}{R_1}$	87	$-\frac{7}{4}$	0	3	0	0	0	Р

(b) There is still negative numbers in the profit row.

B1 1

[10]

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6690/01)

June 2009 6690 Decision Mathematics D2 Mark Scheme

$\begin{array}{c} \text{O1} & (a) \\ (b) \\ (c) \\ (c) \\ (c) \\ (c) \\ 15 & 11 & 14 & 12 \\ 13 & 8 & 17 & 13 \\ 14 & 9 & 13 & 15 \\ 0 & 0 & 0 & 0 \end{array} \right] \rightarrow \begin{bmatrix} 4 & 0 & 3 & 1 \\ 5 & 0 & 9 & 5 \\ 5 & 0 & 4 & 6 \\ 0 & 0 & 0 & 0 \end{bmatrix} : \rightarrow \begin{bmatrix} 3 & 0 & 2 & 0 \\ 4 & 0 & 8 & 4 \\ 4 & 0 & 3 & 5 \\ 0 & 1 & 0 & 0 \end{bmatrix} \\ \text{Either} \begin{bmatrix} 3 & 3 & 2 & 0 \\ 1 & 0 & 5 & 1 \\ 1 & 0 & 0 & 2 \\ 0 & 4 & 0 & 0 \end{bmatrix} \\ \text{Or} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 0 & 6 & 4 \\ 2 & 0 & 1 & 5 \\ 0 & 3 & 0 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 5 & 3 \\ 1 & 0 & 0 & 4 \\ 0 & 4 & 0 & 2 \end{bmatrix} \\ \text{M1 A1} \\ \text{M1 A1} \\ \text{M1 A1} \\ \text{M2 A1} \\ \text{M3 A1} \\ M3 A1$	Question Number	Scheme	N	larks
(c) $\begin{bmatrix} 15 & 11 & 14 & 12 \\ 13 & 8 & 17 & 13 \\ 14 & 9 & 13 & 15 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & 0 & 3 & 1 \\ 5 & 0 & 9 & 5 \\ 5 & 0 & 4 & 6 \\ 0 & 0 & 0 & 0 \end{bmatrix}; \rightarrow \begin{bmatrix} 3 & 0 & 2 & 0 \\ 4 & 0 & 8 & 4 \\ 4 & 0 & 3 & 5 \\ 0 & 1 & 0 & 0 \end{bmatrix}$ $Either \begin{bmatrix} 3 & 3 & 2 & 0 \\ 1 & 0 & 5 & 1 \\ 1 & 0 & 0 & 2 \\ 0 & 4 & 0 & 0 \end{bmatrix}$ (d) $Dr \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 0 & 6 & 4 \\ 2 & 0 & 1 & 5 \\ 0 & 3 & 0 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 5 & 3 \\ 1 & 0 & 0 & 4 \\ 0 & 4 & 0 & 2 \end{bmatrix}$ (d) J-4, M-2, R-3, (D-1) (f) B1;M1A1 $MIA1$	Q1 (a) (b)	There are more tasks than people. Adds a row of zeros	B1 B1	(1) (1)
(d) $\begin{bmatrix} 0 & 3 & 0 & 2 \end{bmatrix} \begin{bmatrix} 0 & 4 & 0 & 2 \end{bmatrix}$ (d) $J - 4, M - 2, R - 3, (D - 1)$ (d) A1 (6)	(c)	$\begin{bmatrix} 15 & 11 & 14 & 12 \\ 13 & 8 & 17 & 13 \\ 14 & 9 & 13 & 15 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & 0 & 3 & 1 \\ 5 & 0 & 9 & 5 \\ 5 & 0 & 4 & 6 \\ 0 & 0 & 0 & 0 \end{bmatrix}; \rightarrow \begin{bmatrix} 3 & 0 & 2 & 0 \\ 4 & 0 & 8 & 4 \\ 4 & 0 & 3 & 5 \\ 0 & 1 & 0 & 0 \end{bmatrix}$ Either $\begin{bmatrix} 3 & 3 & 2 & 0 \\ 1 & 0 & 5 & 1 \\ 1 & 0 & 0 & 2 \\ 0 & 4 & 0 & 0 \end{bmatrix}$ $Or \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 0 & 6 & 4 \\ 2 & 0 & 1 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 5 & 3 \\ 1 & 0 & 0 & 4 \\ 1 & 0 & 0 & 4 \end{bmatrix}$	B1;M	41 A1
(d)		J = 4, M = 2, R = 3, (D = 1)	A1	(6)
Minimum cost is (£)33. B1 (1)	(d)	Minimum cost is (£)33.	B1	(1) [9]

Question Number	Scheme	Mar	ks
O2 (a)	In the classical problem each vertex must be visited only once. In the practical problem each vertex must be visited at least once.	B2, 1, (0 (2)
(b)	A F D B E C A {146352} 21+38+58+36+70+34=257	M1 A1 A1	(3)
(c)	257 is the better upper bound, it is lower.	B1ft	(1)
(d)	R.M.S.T. $C \xrightarrow{34} A \xrightarrow{21} F \xrightarrow{38} D$ 67 E	M1 A1	4)
	Lower bound is $160 + 36 + 58 = 254$	MIAI (4)
(e)	Better lower bound is 254, it is higher	B1ft	
(f)	$254 < \text{optimal} \le 257$	B1	(2)
	 Notes: (a) 1B1: Generous, on the right lines bod gets B1 2B1: cao, clear answer. (b) 1M1:Nearest Neighbour each vertex visited once (condone lack of return to start) 1A1: Correct route cao – must return to start. 2A1: 257 cao (c) 1B1ft: ft their lowest. (d) 1M1: Finding correct RMST (maybe implicit) 160 sufficient 1A1: cao tree or 160. 2M1:Adding 2 least arcs to B, 36 and 58 only 2A1: 254 (e) 1B1ft: ft their highest (f) 1B1: cao 		[12]

Question Number	Scheme	Mar	ks
Q3 (a)	Row minima $\{-5, -4, -2\}$ row maximin $= -2$ Column maxima $\{1, 6, 13\}$ col minimax $= 1$ $-2 \neq 1$ therefore not stable.	M1 A1 A1	(3)
(b)	Column 1 dominates column 3, so column 3 can be deleted.	B1	(1)
(c)	A plays 1A plays 2A plays 3B plays 15-12B plays 2-64-3	B1 B1	(2)
(d)	Let B play row 1 with probability p and row 2 with probability (1-p) If A plays 1, B's expected winnings are $11p - 6$ If A plays 2, B's expected winnings are $4 - 5p$ If A plays 3, B's expected winnings are $5p - 3$	M1 A1	
	$ \begin{array}{c} $	M1 A1	
	$5p-3 = 4-5p$ $10p = 7$ $p = \frac{7}{10}$	M1	
	B should play 1 with a probability of 0.7 2 with a probability of 0.3 and never play 3	A1	
	The value of the game is 0.5 to B	A1	(7) [13]

Question Number	Scheme	Mark	S
Q4 (a)	Value of cut $C_1 = 34$; Value of cut $C_2 = 45$	B1; B1	(2)
(b)	S B F G T or S B F E T – value 2 Maximum flow = 28	M1 A1 A1=B1	(3)
	Notes: (a) 1B1: cao 2B1: cao (b) 1M1: feasible flow-augmenting route and a value stated 1A1: a correct flow-augmenting route and value 1A1= B1: cao		[5]
Q5			
(d)	x = 0, y = 0, z = 2	B2,1,0	(2)
(b)	$P - 2x - 4y + \frac{5}{4}r = 10$	M1 A1	(2)
			[4]
	 Notes: (a) 1B1: Any 2 out of 3 values correct 2B1: All 3 values correct. (b) 1M1: One equal sign, modulus of coefficients correct. All the right ingredients. 1A1: cao – condone terms of zero coefficient 		

Question Number	Scheme	M	arks
Q6 (a)	The supply is equal to the demand	B1	(1)
(b)	A B C X 16 6 Y 9 8 Z 15	B1	(1)
(c)	ABCX16- θ 6+ θ Y9- θ 8+ θ Z θ 15- θ Value of θ = 9, exiting cell is YB	M1 A ⁻	1 (3)
(d)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A	1
	XC = 7 - 0 - 20 = -13 YA = 16 + 5 - 17 = 4 YB = 12 + 5 - 8 = 9 ZB = 10 + 11 - 8 = 13	A1	(3)
	ABCX7- θ 15 θ Y17Z9+ θ 6- θ Value of θ = 6, entering cell XC, exiting cell ZC	M1 A	1
	$ \begin{array}{ c c c c c } \hline A & B & C \\ \hline X & 1 & 15 & 6 \\ \hline Y & & & 17 \\ \hline Z & 15 & & \\ \hline Cost (\pounds) 524 \end{array} $	A1 B1	(3) (1)
			[12]

Questio Numbe	n r			Scheme			Marks
Q7 (a	a) Stage	State	Action	Dest.	Value (in £1000s)]	
		(11 210008)	250		300*	-	
	1	200	200	0	240*		
	1	150	150	0	180*		
		100	100	0	120*		
		50	50	0	60*		
		0	0	0	0*		
		250	280	0	200 + 0 = 280		
			200	50	235 + 60 = 295		
			150	100	$190 + 120 = 310^*$		
			100	150	125 + 180 = 305		1M1 A1
			50	200	65 + 240 = 305		
			0	250	0 + 300 = 300		
	2	200	200	0	235 + 0 = 235		
			150	50	190 + 60 = 250*		
			100	100	125 + 120 = 245		A1
			50	150	65 + 180 = 245		
			0	200	0 + 240 = 240		
		1.50	150	0	190 + 0 = 190*	-	2M1
			100	50	170 + 0 = 190 125 + 60 = 185		21011
			50	100	$123 + 00^{\circ} = 105^{\circ}$ 65 + 120 - 185		A1
			0	150	0.0 + 120 = 100 0.0 + 180 - 180		
		100	100	0	$125 \pm 0 = 125*$	1	Δ1
		100	50	50	123 + 0 = 123 65 + 60 - 125*		
			0	100	03 + 00 = 123 0 + 120 = 120	1	
		50	50	0	65 + 0 = 65*		
		50	0	50	0.0 + 60 = 0.00	-	
		0	0	0	0 + 00 = 00		3M1
	2	250	250	0	$0 + 0 = 0^{-1}$	-	A1ft
	3	230	230	50	$300 \pm 0 = 300$	-	
			150	100	$230 \pm 03 = 293$ 170 + 125 = 205	-	
			100	100	170 + 123 - 293 110 + 100 - 200	-	
			50	200	110 + 190 - 300 55 + 250 - 205	-	
			0	250	$0 + 310 = 310^{\circ}$	1	
			0	230	0 + 510 - 510]	
	Maxim	um income £31	0 000				B1 (10)
			Scheme	1 2	2 3		
			Invest (in £10	00s) 100 1	50 0		
(t)) Store:	Sahama haina	onsiderad				D1
•	Stage:	Money evoilab	le to invest				B1
	Action:	A mount choser	to invest				B1 (2)
	ACTION.	Amount Chosel	1 10 111758				[13]

Scheme	Marks
E.g. Add 6 to make all elements positive $\begin{bmatrix} 4 & 14 & 5 \\ 13 & 10 & 3 \\ 7 & 1 & 10 \end{bmatrix}$	B1
Let Laura play 1, 2 and 3 with probabilities p_1 , p_2 and p_3 respectively Let V = value of game + 6	B1
e.g. Maximise P = V Subject to: $V - 4p_1 - 13p_2 - 7p_3 \le 0$ $V - 14p_1 - 10p_2 - p_3 \le 0$ $V - 5p_1 - 3p_2 - 10p_3 \le 0$ $p_1 + p_2 + p_3 \le 1$ $p_1, p_2, p_3 \ge 0$ Notes: 1B1: Making all elements positive 2B1: Defining variables 3B1: Objective, cao word and function 1M1: At least one constraint in terms of their variables, must be going down columns. Accept = here.	B1 M1 A3,2ft,1ft ,0 (7) [7]
1A1ft: ft their table. One constraint in V correct. 2A1ft: ft their table. Two constraints in V correct. 3A1: CAO all correct .	
Alt using x_i method Now additionally need: let $x_i = \frac{p_i}{v}$ for 2B1 minimise $(P) = x_1 + x_2 + x_3 = \frac{1}{v}$ subject to: $4x_1 + 13x_2 + 7x_3 \ge 1$ $14x_1 + 10x_2 + x_3 \ge 1$ $5x_1 + 3x_2 + 10x_3 \ge 1$ $x_i \ge 0$	
	Scheme E.g. Add 6 to make all elements positive $\begin{bmatrix} 4 & 14 & 5 \\ 13 & 10 & 3 \\ 7 & 1 & 10 \end{bmatrix}$ Let Laura play 1, 2 and 3 with probabilities p ₁ , p ₂ and p ₃ respectively Let V = value of game + 6 e.g. Maximise P = V Subject to: V - 4p ₁ - 13p ₂ - 7p ₃ ≤ 0 V - 14p ₁ - 10p ₂ - p ₃ ≤ 0 V - 5p ₁ - 3p ₂ - 10p ₃ ≤ 0 p ₁ + p ₂ + p ₃ ≤ 1 p ₁ , p ₂ , p ₃ ≥ 0 Note: 1B1: Making all elements positive 2B1: Defining variables 3B1: Objective, cao word and function IM1: At least one constraint in terms of their variables, must be going down columns. Accept = here. 1A1ft: ft their table. Two constraint in V correct. 3A1: CAO all correct . Alt using x _i method Now additionally need: let $x_i = \frac{p_i}{v}$ for 2B1 minimise $(P) = x_1 + x_2 + x_3 = \frac{1}{v}$ subject to: $4x_i + 13x_2 + 7x_3 \ge 1$ $14x_i + 10x_2 + x_3 \ge 1$ $5x_i + 3x_2 + 10x_3 \ge 1$ $x_i \ge 0$

Mark Scheme (Results) Summer 2010

GCE

GCE Decision Mathematics D2 (6690/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Summer 2010 Publications Code UA023714 All the material in this publication is copyright © Edexcel Ltd 2010

Summer 2010 Decision Mathematics D2 6690 Mark Scheme

Question Number	Scheme	Mar	ks
Q1 (a)	$\mathbf{F} = \begin{bmatrix} 22 \\ 22 \\ 13 \\ 20 \\ 20 \end{bmatrix} \mathbf{D}$	M1 A1	(2)
(b)	Minimum Spanning tree length 93, so upper bound is £186	B1ft	(1)
(c)	A C F E B D A 18 24 13 20 22 28 Length 125 A C F E D B A 18 24 13 20 22 36 Length 133	M1 A1 A1	(3)
(d)	Best upper bound is £125	B1ft	(1)
(e)	Delete A A C	M1 A1	
	RMST weight = 77 Lower bound = 77 + 18 + 22 = \pounds 117	M1 A1	(4) [11]

Question Number	Scheme							
Q2 (a)	Since maximising, subtract all elements from some $n \ge 27$							
	$\begin{bmatrix} 12 & 6 & 8 & 13 \\ 10 & 5 & 11 & 60 \\ 5 & 6 & 3 & 8 \\ 11 & 4 & 7 & 16 \end{bmatrix}$	1M1 2M1						
	Reduce rows $ \begin{bmatrix} 6 & 0 & 2 & 7 \\ 5 & 0 & 6 & 55 \\ 2 & 3 & 0 & 5 \\ 7 & 0 & 3 & 12 \end{bmatrix} $ then columns $ \begin{bmatrix} 4 & 0 & 2 & 2 \\ 3 & 0 & 6 & 50 \\ 0 & 3 & 0 & 0 \\ 5 & 0 & 3 & 7 \end{bmatrix} $	3M1 A1						
	$\begin{bmatrix} 2 & 0 & 0 & 0 \\ 1 & 0 & 4 & 48 \\ 0 & 5 & 0 & 0 \\ 3 & 0 & 1 & 5 \end{bmatrix}$	4M1 A1ft						
	$\begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 0 & 3 & 47 \\ 0 & 6 & 0 & 0 \\ 2 & 0 & 0 & 4 \end{bmatrix}$	5M1A1 (8)						
(b)	Three optimal allocations:Harry344Jess112Louis431Saul223	M1						
	Total amount earned by team: £90	A1 (2) [10]						

Question	Scheme					Marks	
Number							
	St	age State	Action	Dest.	Value		
		G	GT	Т	17*		1M1
	1	Н	HT	Т	21*		A1
		Ι	IT	Т	29*		
	2	D	DG	G	$\max(22, 17) = 22^*$		0141 41
			DH	Η	$\max(31, 21) = 31$		ZMEAT
		Е	EH	Η	$\max(34, 21) = 34^*$		A1
			EI	Ι	$\max(39, 29) = 39$		
		F	FI	Ι	$\max(52, 29) = 52^*$		
	3	А	AD	D	$\max(41, 22) = 41$		
			AE	E	$\max(38, 34) = 38^*$		2M1 Λ1 f t
		В	BE	Е	$\max(44, 34) = 44^*$		SIMITATI
		С	CE	E	$\max(36, 34) = 36^*$		A1ft
			CF	F	$\max(35, 52) = 52$		
	4	S	SA	А	$\max(37, 38) = 38^*$		
			SB	В	$\max(39, 44) = 44$		A1ft
			SC	С	$\max(41, 36) = 41$		(0)
							(*)
(b)	Route: SAEHT	Greatest and	nual cost:	£38 00	00		M1 A1ft (2)
(c)	37 + 38 + 34 + 21 130						
	Average expenditure	e —4	=	$\frac{-}{4} = \frac{1}{4}$	132 500		MTAT (2)
		•		•			[13]

Question	Scheme				
Number		- Mai	(1)		
Q5 (a)	Initial flow $= 41$	B1	(1)		
(b)	Capacity of $C_1 = 69$ Capacity of $C_2 = 64$	B1 B1	(2)		
(c)					
	\mathbf{D}	M1 A1	(2)		
(d)	e.g. SBADHT – 2 SCGEDHT – 2	M1 A1 A1	(3)		
(e)	maximum flow = minimum cut e.g. cut through SA, SB, CE, GE, GI or HT, FI, GI	DM1 A1	(2) [10]		
	 Notes: (a) 1B1: cao (b) 1B1: cao (permit B1 if 2 correct answers, but transposed) 2B1: cao (c) 1M1: Two numbers on each arc 1A1: cao (d) 1M1: One valid flow augmenting route, S to T, found and value (≤4) stated. 1A1: Flow increased by at least 2 2A1: Flow increased by 4 (e) 1DM1: Must have attempted (d) and made an attempt at a cut. 1A1: cut correct – may be drawn. Refer to max flow-min cut theorem three words out of four.				

Question Number	Scheme				
Q6 (a)	P - x - 2y - 6z = 0	B1 (*	1)		
(b)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	b.v. x y z r s t Value Row Ops.	M1 Δ1			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1ft A1			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	((5)		
	$1 2 -\frac{1}{2} 0 0 \frac{1}{2} 0 42 144 + 012$				
		M1 Δ1ft			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	z 1 0 1 $-\frac{1}{2}$ $\frac{1}{2}$ 0 2 $R_2 - \frac{1}{4}R_1$	MTAT ((4)		
	t -3 0 0 $\frac{1}{2}$ -1 1 6 $R_3 + \frac{1}{4}R_1$				
	P 1 0 0 1 1 0 52 $R_4 + \frac{1}{2}R_1$				
(c)	P = 52 $x = 0$ $y = 20$ $z = 2$ $r = 0$ $s = 0$ $t = 6$ Notes:	M1 A1ft A1 (: [1	3) 3]		
	 (a) 1B1. cao (b) 1M1: correct pivot located, attempt to divide row iA1: pivot row correct including change of b.v. 2M1: (ft) Correct row operations used at least once or stated correctly. iA1ft: Looking at non zero-and-one columns, one column ft correct 2A1: cao. 3M1: (ft)Correct pivot identified – negative pivot gets M0 M0 iA1: ft pivot row correct including change of bv – but don't penalise b.v. twice. 4M1: (ft) Correct row operations used at least once or stated correctly. iA1: ft pivot row correct including change of bv – but don't penalise b.v. twice. 				
	1A1ft: At least 4 values correct. 2A1: cao				

edex	cel	

Question Number	Sche	eme	Marks	
Q7				
	$\begin{bmatrix} -4 & 5 & 1 \\ 3 & -1 & -2 \\ -3 & 0 & 2 \end{bmatrix} \rightarrow \text{add 5 to all entries} \begin{bmatrix} 1 & 10 & 6 \\ 8 & 4 & 3 \\ 2 & 5 & 7 \end{bmatrix}$			
	Either Define variables	Or Define variables		
	e.g. let p_1 , p_2 and p_3 be the probability that A plays rows 1, 2 and 3 respectively.	e.g. let p_1 , p_2 and p_3 be the probability that A plays rows 1, 2 and 3 respectively. Let $x_i = \frac{p_i}{r_i}$	B1	
	Maximise P = V	Minimise $P = x_1 + x_2 + x_3$	B1	
	Subject to:	Subject to		
	$V - p_1 - 8p_2 - 2p_3 \le 0$	$x_1 + 8x_2 + 2x_3 \ge 1$	M1	
	$V - 10p_1 - 4p_2 - 5p_3 \le 0$	$10x_1 + 4x_2 + 5x_3 \ge 1$	A1	
	$V - 6p_1 - 3p_2 - 7p_3 \le 0$	$6x_1 + 3x_2 + 7x_3 \ge 1$	A1	
	$p_1 + p_2 + p_3 \le 1$	$x_1, x_2, x_3 \ge 0$	A1	
	$p_1, p_2, p_3 \ge 0$		[7]	
	Notes: 1M1: Adding n (≥ 4) to all entries 1B1: Defining variables 1B1: Objective correct 2M1: At least 3 constraints, using columns, 1A1ft: one correct constraint – excluding r 2A1ft: two correct constraints – excluding r 3A1: cao including non-negativity constrain	, one of correct form non-negativity constraint non-negativity constraint nt		

Notes for Question 1

- (a) 1M1: Spanning tree found. Allow 1x2x43 across top of table or 93
 - 1A1: CAO must see tree or list of arcs
- (b) 1B1ft: 186 their ft93 x 2
- (c) 1M1: One Nearest Neighbour each vertex visited at least once (condone lack of return to start)
 - 1A1: One correct route and length CAO must return to start.
 - 2A1: Second correct route and length CAO must return to start.
- (d) 1B1ft: ft but only on three different values.
- (e) 1M1: Finding correct RMST (maybe implicit) 77 sufficient, or correct numbers. 4 arcs.1A1: CAO tree or 77.
 - 2M1: Adding 2 least arcs to A, 18 and 22 or 40 only
 - 2A1: CAO 117

Notes for Question 2

edexcel

- (a) 1M1: Subtracting from some $n \ge 27$, condone up to two errors
 - 2M1: Dealing with (Jess, 4) entry.
 - 3M1: Reducing rows then columns
 - 1A1: cao (pick up (J,4) value here)
 - 4M1: Double covered +e; one uncovered e; and one single covered unchanged. 2 lines needed to 3 lines needed.
 - 2A1ft: ft correct no errors
 - 5M1: Double covered +e; one uncovered e; and one single covered unchanged. 3 line to 4 line solution.
 - 3A1: correct no errors
- (b) 1M1: A complete, correct solution. 1A1: cao

Q2 Special case (Minimises)

											M0 M1
[18	24	22	17]			[1	7	5	0]		
20	25	19	60	row re	eduction	1	6	0	41		
25	24	27	22	10,110	unenen	\rightarrow 3	2	5	0		
19	26	23	14			5	12	9	0		
L				_	_	۔ م ٦			_		M1
			0*	5	5	0					
colu	ımn redu	uctions		4	0*	41					
			2	0*	5	0					
			4	10	9	0*					A1
											M0 M0
Solutio	on:										
Harry		- 1									M1
Jess Louis		- 3	5								
Saul		- 4	ŀ								
Total £	E75										A1

Maximum 5 marks

Notes for Question 3

- (a) 1B1: Cao
- (b) 1M1: 6 shadow costs and precisely 3 improvement indices stated. (no extra zeros)
 1A1: cao.

2M1: A valid route, negative II chosen, only one empty square used, θ 's balance. 2A1ft: improved solution (no extra zeros)

3M1ft: 6 shadow costs and precisely 3 improvement indices stated (no extra zeros) 3A1: cao.

4M1ft:A valid route, negative II chosen, only one empty square used, θ 's balance. 4A1ft: improved solution (no extra zeros)

5A1=5M1: 6 shadow costs and precisely 3 improvement indices, (or 1 negative improvement index), stated (no extra zeros).

(c) 1B1ft=1A1ft: cao for conclusion, but must follow from at least one negative in a third 'set' of IIs.

Misreads for Q3b Not choosing most negative.

	Α	В	С	D
Х	18	31	4	
Y			18	29

		28	20	19	22
		Α	В	С	D
0	Х	Х	Х	Х	-6
-5	Y	-8	-3	Х	X

Either	Or				
Entering cell: XD	Entering cell: YB				
A B C D	A B C D				
X 18 31 4-θ θ	X 18 31-θ 4+θ				
Y $18+\theta$ $29-\theta$	Υ θ 18-θ 29				
Exiting cell: XC	Exiting cell: YC				
$\theta = 4$	$\theta = 18$				
A B C D X 18 31 4 Y 22 25	A B C D X 18 13 22 Y 18 29				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Candidates can get

2M1 2A1 for first route and the improved solution

3M1 3A0 – 6 shadow costs and 3 IIs

4M1 for finding a valid route and 4A1 if their route leads to an improved solution [A0 – 6 shadow costs and 3 IIs but it is CAO]

Notes for Question 4

Throughout section (a):

- Condone lack of destination column and/or reversed stage numbers throughout.
- Only penalise incorrect result in Value ie ignore working values.
- Penalise absence of state or action column with first two A marks earned only
- Penalise empty/errors in stage column with first A mark earned only.
- (a) 1M1: First, T, stage complete and working backwards.
 - 1A1: CAO (condone lack of *)
 - 2M1: Second stage completed. Penalise reversed states here and in (b). Bod if something in each column.
 - 2A1: Any 2 states correct. Penalise * errors, with an A mark, only once in the question).
 - 3A1: All 3 states correct. (Penalise * errors only once in the question).
 - 3M1: 3rd and 4th stages completed. Bod if something in each column.
 - 4A1ft: Any 2 states correct. (Penalise * errors only once in the question). A, B or C 5A1ft: All 3 states correct. (Penalise * errors only once in the question). A, B and C.

6A1ft: Final, S, state correct. (Penalise * errors only once in the question).

- (b) 1M1: Route (S to T or vv.) and cost stated 1A1ft: CAO (Penalise reversed states here)
- (c) 1M1: Sum of four arcs /4 (do not isw here if they 'add' to this method) 1A1: CAO (32 500 gets both marks)

Special cases (and misreads)

SC1 Maximin: treat as misread.

MAX 11/13

SC2 Maximum: 1M1,1A1; 2M0; 3M1,4A1ft,5A0,6A1ft, M1A1ft M1A1ft MAX 9/13

- **SC3 Minimum:** Marks awarded as above SC2
- SC4 Maximax: 1M1,1A1; 2M0; 3M1,4A0,5A0,6A0,M1A1ft M1A1ft MAX 7/13
- SC5 Minimin: Marks awarded as above SC4

SC6 Working forwards:

1M1,1A0; 2M0; 3M1,4A0,5A0,6A0,M1A1ft M1A1ft MAX6/13

Anything else annotate and send to review.

Q4 Misreads

SC 1 Maximin

Stage	State	Action	Dest	Value
1	G	GT	Т	17*
	Η	HT	Т	21*
	Ι	IT	Т	29*
2	D	DG	G	$\min(22, 17) = 17$
		DH	Н	$\min(31, 21) = 21^*$
	E	EH	Н	$\min(34, 21) = 21$
		EI	Ι	$\min(39, 29) = 29^*$
	F	FI	Ι	$\min(52, 29) = 29^*$
3	А	AD	D	$\min(41, 21) = 21$
		AE	Е	$\min(38, 29) = 29*$
	В	BE	Е	$\min(44, 29) = 29^*$
	С	CE	Е	$\min(36, 29) = 29^*$
		CF	F	$\min(35, 29) = 29*$
4	S	SA	А	$\min(37, 29) = 29^*$
		SB	В	$\min(39, 29) = 29^*$
		SC	С	$\min(41, 29) = 29^*$

SC 2 Maximum route

Stage	State	Action	Dest	Value
1	G	GT	Т	17*
	Η	HT	Т	21*
	Ι	IT	Т	29*
2	D	DG	G	22 + 17 = 39
		DH	Н	31 + 21 = 52*
	E	EH	Н	34 + 21 = 55
		EI	Ι	39 + 29 = 68*
	F	FI	Ι	52 + 29 = 81*
3	А	AD	D	41 + 52 = 93
		AE	E	38 + 68 = 106*
	В	BE	Е	44 + 68 = 112*
	С	CE	E	36 + 68 = 104
		CF	F	35 + 81 = 116*
4	S	SA	А	37 + 106 = 143
		SB	В	39 + 112 = 151
		SC	С	41 + 116 = 157*

Route: SCFIT

SC3 Minimum route

Stage	State	Action	Dest	Value
1	G	GT	Т	17*
	Η	HT	Т	21*
	Ι	IT	Т	29*
2	D	DG	G	22 + 17 = 39*
		DH	Η	31 + 21 = 52
	Е	EH	Η	34 + 21 = 55*
		EI	Ι	39 + 29 = 68
	F	FI	Ι	52 + 29 = 81*
3	А	AD	D	$41 + 39 = 80^*$
		AE	E	38 + 55 = 93
	В	BE	Е	44 + 55 = 99*
	С	CE	E	36 + 55 = 91*
		CF	F	35 + 81 = 116
4	S	SA	Α	37 + 80 = 117*
		SB	В	39 + 99 = 138
		SC	С	41 + 91 = 132

Route: SADGT

SC 4 Maximax route

Stage	State	Action	Dest.	Value
	G	GT	Т	17*
1	Η	HT	Т	21*
	Ι	IT	Т	29*
2	D	DG	G	$\max(22, 17) = 22$
		DH	Η	$\max(31, 21) = 31^*$
	Е	EH	Η	$\max(34, 21) = 34$
		EI	Ι	$\max(39, 29) = 39^*$
	F	FI	Ι	$\max(52, 29) = 52^*$
3	А	AD	D	$\max(41, 31) = 41$
		AE	E	$\max(38, 39) = 39^*$
	В	BE	E	$\max(44, 39) = 44^*$
	С	CE	E	$\max(36, 39) = 39$
		CF	F	$\max(35, 52) = 52^*$
4	S	SA	A	$\max(37, 39) = 39$
		SB	В	$\max(39, 44) = 44$
		SC	C	$\max(41, 52) = 52^*$

Route SCFIT

SC 5 Minimin

Stage	State	Action	Dest	Value
1	G	GT	Т	17*
	Η	HT	Т	21*
	Ι	IT	Т	29*
2	D	DG	G	$\min(22, 17) = 17^*$
		DH	Н	$\min(31, 21) = 21$
	Е	EH	Н	$\min(34, 21) = 21^*$
		EI	Ι	$\min(39, 29) = 29$
	F	FI	Ι	$\min(52, 29) = 29^*$
3	А	AD	D	$\min(41, 17) = 17^*$
		AE	E	$\min(38, 21) = 21$
	В	BE	Е	$\min(44, 21) = 21*$
	С	CE	Е	$\min(36, 21) = 21^*$
		CF	F	$\min(35, 29) = 29$
4	S	SA	А	$\min(37, 17) = 17^*$
		SB	В	$\min(39, 21) = 21$
		SC	С	$\min(41, \overline{21}) = 21$

Route SADGT

SC 6 Working forwards S to T

Stage	State	Action	Dest	Value
1	А	AS	S	37*
	В	BS	S	39*
	С	CS	S	41*
	D	DA	Α	$\max(41, 37) = 41^*$
	Е	EA	А	max(38, 37) = 38*
		EB	В	max(44, 39) = 44
		EC	С	$\max(36, 41) = 41$
	F	FC	С	$\max(35, 41) = 41^*$
3	G	GD	D	$\max(22, 41) = 41^*$
	Η	HD	D	$\max(31, 41) = 41$
		HE	E	max(34, 38) = 38*
	Ι	IE	Е	$\max(39, 38) = 39^*$
		IF	F	$\max(52, 41) = 52$
4	Т	TG	G	$\max(17, 41) = 41$
		TH	Η	max(21, 38) = 38*
		TI	Ι	max(29, 39) = 39

Route SAEHT

Q6b Misreads Alternative 1

Increasing *x* first,

b.v.	x	y	Z	r	S	t	value	row ops
r	0	1	2	1	0	0	24	R_1 no change
x	1	$\frac{1}{2}$	2	0	$\frac{1}{2}$	0	14	$R_2 \div 2$
t	0	1	5	0	$\frac{1}{2}$	1	36	$R_{3} + R_{2}$
Р	0	$-\frac{3}{2}$	-4	0	$\frac{1}{2}$	0	14	$R_{4} + R_{2}$

then y next

b.v.	x	y	z	r	S	t	value	row ops
у	0	1	2	1	0	0	24	$R_1 \div 1$
x	1	0	1	$-\frac{1}{2}$	$\frac{1}{2}$	0	2	$R_2 - \frac{1}{2}R_1$
t	0	0	3	-1	$\frac{1}{2}$	1	12	$R_3 - R_1$
Р	0	0	-1	$\frac{3}{2}$	$\frac{1}{2}$	1	50	$R_4 + \frac{3}{2}R_1$

then *z*.

b.v.	x	y	Z	r	S	t	value	row ops
у	-2	1	0	2	-1	0	20	$R_1 - 2R_2$
z	1	0	1	$-\frac{1}{2}$	$\frac{1}{2}$	0	2	$R_2 \div 2$
t	-3	0	0	$\frac{1}{2}$	-1	1	6	$R_{3} - 3R_{2}$
Р	0	0	0	1	1	1	52	$R_{4} + R_{2}$
edexcel

Q6b Misreads Alternative 2

Increasing *x* first

b.v.	x	у	Z	r	S	t	value	row ops
r	0	1	2	1	0	0	24	R_1 no change
x	1	$\frac{1}{2}$	2	0	$\frac{1}{2}$	0	14	$R_2 \div 2$
t	0	1	5	0	$\frac{1}{2}$	1	36	$R_{3} + R_{2}$
Р	0	$-\frac{3}{2}$	-4	0	$\frac{1}{2}$	0	14	$R_{4} + R_{2}$

Increasing z next

b.v.	x	у	Z	r	S	t	value	row ops
r	-1	$\frac{1}{2}$	0	1	$-\frac{1}{2}$	0	10	$R_1 - 2R_2$
Z.	$\frac{1}{2}$	$\frac{1}{4}$	1	0	$\frac{1}{4}$	0	7	$R_2 \div 2$
t	$-\frac{5}{2}$	$-\frac{1}{4}$	0	0	$\frac{3}{4}$	1	1	$R_{3}-5R_{2}$
Р	2	$-\frac{1}{2}$	0	0	$\frac{3}{2}$	0	42	$R_4 + 4R_2$

then increasing *y*

b.v.	x	y	Z	r	S	t	value	row ops
У	-2	1	0	2	-1	0	20	$R_1 \div \frac{1}{2}$
z	1	0	1	$-\frac{1}{2}$	$\frac{1}{2}$	0	2	$R_2 - \frac{1}{4}R_1$
t	-3	0	0	$\frac{1}{2}$	-1	1	6	$R_{3} + \frac{1}{4}R_{1}$
Р	1	0	0	1	1	0	52	$R_4 + \frac{1}{2}R_1$

edexcel

Q6b Misreads Alternative 3

Increasing *y* first

b.v.	x	y	Z	r	S	t	value	row ops
у	0	1	2	1	0	0	24	$R_1 \div 1$
S	2	0	2	-1	1	0	4	$R_{2} - R_{1}$
t	-1	0	2	$-\frac{1}{2}$	0	1	10	$R_3 - \frac{1}{2}R_1$
Р	-1	0	-2	2	0	0	48	$R_4 + 2R_1$

Increasing *x* next

b.v.	x	y	Z.	r	S	t	value	row ops
у	0	1	2	1	0	0	24	R_1 no changw
x	1	0	1	$-\frac{1}{2}$	$\frac{1}{2}$	0	2	$R_2 \div 2$
t	0	0	3	-1	$\frac{1}{2}$	1	12	$R_{3} - 3R_{2}$
Р	0	0	-1	$\frac{3}{2}$	$\frac{1}{2}$	0	50	$R_{4} + R_{2}$

then increasing z

b.v.	x	y	z	r	S	t	value	row ops
у	-2	1	0	2	-1	0	20	$R_1 - 2R_2$
Z.	1	0	1	$-\frac{1}{2}$	$\frac{1}{2}$	0	2	$R_2 \div 1$
t	-3	0	0	$\frac{1}{2}$	-1	1	6	$R_{3} + R_{2}$
Р	1	0	0	1	1	0	52	$R_{4} + R_{2}$

edexcel

Q6b Misreads Alternative 4

Increasing *y* first

b.v.	x	y	Z	r	S	t	value	row ops
у	0	1	2	1	0	0	24	$R_1 \div 1$
S	2	0	2	-1	1	0	4	$R_{2} - R_{1}$
t	-1	0	2	$-\frac{1}{2}$	0	1	10	$R_3 - \frac{1}{2}R_1$
Р	-1	0	-2	2	0	0	48	$R_4 + 2R_1$

Increasing z next

b.v.	x	y	Z	r	S	t	value	row ops
у	-2	1	0	2	-1	0	20	$R_1 - 2R_2$
Z.	1	0	1	$-\frac{1}{2}$	$\frac{1}{2}$	0	2	$R_2 \div 2$
t	-3	0	0	$\frac{1}{2}$	-1	1	6	$R_{3} - 2R_{2}$
Р	1	0	0	1	1	0	52	$R_4 + 2R_2$

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code UA023714 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results)

June 2011

GCE Decision D2 (6690) Paper 1

ALWAYS LEARNING

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025 or visit our website at <u>www.edexcel.com</u>.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011 Publications Code UA027672 All the material in this publication is copyright © Edexcel Ltd 2011

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- L The second mark is dependent on gaining the first mark

June 2011 Decision Mathematics D2 6690 Mark Scheme

Question Number	Scheme	Marks
1. (a)	A B C D E F A - 19 11 23 20 37 B 19 - 8 42 17 32 C 11 8 - 34 9 26 D 23 42 34 - 27 31 E 20 17 9 27 - 17 F 37 32 26 31 17 -	B3, 2, 1, 0 (3)
(b)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1 A1 (3)
(c)	Delete A A f f g g g g g g g g	M1 A1 M1 A1 (4)

Question Number		Scheme	Marks
(a)1B1 2B1 3B1 (b)M1 1A1 2A1 (c)1M1 1A1 2M1 2A1	One double entry correct Two double entries correct Three double entries correct NN route, each letter appeari CAO CAO Finding my RMST – accept of Either 8 + 9 + 17 + 27 or 61 Adding on two least arcs, acc 91 CAO		
2. (a)	Adds a column of four zeros	B1 (1)	
	Shadow costs 31	42 47 9	
	A 0 1 x -9 2 x -15 3 9 -9 4 1	B C D -13 -15 -9 x -11 0 x x 6 -7 x x	M1 A1 M1 A1 (4)
(b)	A B 1 $20 - \theta$ 2 $15 + \theta$ $7 - \theta$ 3 $18 + \theta$ $2 + \theta$ 4 $2 + \theta$ $2 + \theta$ Entering cell: 1C	$ \begin{array}{c c} C & D \\ \theta & \\ \hline \\ -\theta & \\ 28 & 10 \end{array} $ Exiting cell: 3C	M1 A1ft
(c)	A B O 1 18 1 2 17 5 3 20 4 2	C D 2	DM1 A1 (4) 9

Question Number		So	cheme				Marks
		N	Jotes.				
(a)	1B1: cao	<u>1</u>	10105				
(b)	1M1: Finding all 8 sl 1A1: cao 2M1: Finding missin 2A1: cao	nadow costs g four impro	vement	indice	es – no ext	ra zeros	
(c)	1M1: A valid route, t square used, θ's bala 1A1ft: consistent; the 2DM1: An improved one of my negative in route. 2A1: cao						
3. (a)	P - 7x + z + 4s = 320						M1 A1 (2)
		1 1	1 1			1	
(b)	b.v x y	z r	<i>S</i> 1	t	Value		
	$r -\frac{1}{2} 0$	2 1	$-\frac{1}{2}$	0	10	-	
	$y \frac{1}{2} 1$	$\frac{3}{4}$ 0	$\frac{1}{4}$	0	5		
	$t \frac{1}{2} 0$	1 0	$-\frac{1}{4}$	1	4		
	<i>P</i> -7 0	1 0	4	0	320]	
					X 7 1		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	z r	<i>S</i> 3	<u>t</u>		Row ops. $\mathbf{D} + 1 \mathbf{D}$	
	r = 0 = 0	3 1	- <u>4</u>	1	14	$\mathbf{K}_1 + \frac{1}{2}\mathbf{K}_3$	2MI 2AIII
	y 0 1	$-\frac{1}{4}$ 0	$\frac{1}{2}$	- 1	1	$R_2 - \frac{1}{2}R_3$	
	<i>x</i> 1 0	2 0	$-\frac{1}{2}$	2	8	$R_3 \div \frac{1}{2}$	1M1 2A1
	P = 0 = 0	15 0	$\frac{1}{2}$	14	376	$R_4 + 7R_3$	3A1
							(5)
(c)	P = 376 x = 8 y = 2	1 z = 0 r =	14 <i>s</i> =	= 0 t =	= 0		M1 A1ft A1 (3) 10

Question Number	Scheme	Marks
(a)	<u>Notes:</u> 1M1: One equal sign, P and 320 present 1A1: cao	
(b)	 1M1: correct pivot located, attempt to divide row. If choosing negative pivot M0M0 in (b) 1A1: pivot row correct including change of b.v. 2M1: (ft) Correct row operations used at least once or stated correctly. 2A1ft: Looking at non zero-and-one columns, one column ft correct 3A1: cao. 	
(c)	1M1: At least 4 values stated. Reading off bottom row, or negative values get M0. 1A1ft: Their four basic variables correct ft from their table. 2A1: cao	

Question Number	Scheme	Marks
4. (a)	S plays 1S plays 2S plays 3L plays 1-4-11L plays 23-1-2L plays 3-302Row 3 dominates row 1 so row 1 may be deleted. $ S plays 1 \ S plays 2 \ S plays 3 \ L plays 2 \ 3 \ -1 \ -2 \ L plays 3 \ -3 \ 0 \ 2 \ -1 \ -2 \ L plays 3 \ -3 \ 0 \ 2 \ -1 \ -2 \ -2 \ -2 \ -2 \ -2 \ -2 $	M1 M1
	If Sam plays 3: Laura's gain is $-p + 0$ (1- p) = $-p$ If Sam plays 3: Laura's gain is $-2p + 2$ (1- p) = $2 - 4p$	(3)
(b)	4 $6p-32$ 0 $-p$ -2 $2-4p-4$ -4	B2,1ft,0 (2)
(c)	$-3+6p = -p$ $7p = 3$ $p = \frac{3}{7}$ Laura should play row 1: never, row 2: $\frac{3}{7}$ of the time and row 3: $\frac{4}{7}$ of the time and the value of the game is $-\frac{3}{7}$ to her.	M1 A1 A1ft A1 (4) 9

Question	Scheme	Marks
	Notes:	
(a)	1M1: Matrix reduced correctly. Could be implicit from equations.2M1: Setting up three probability equations, implicit definition of p.1A1: CAO	
(b)	 1B1ft: At least two lines correct, accept p>1 or p<0 here. Must both be function of p. 2B1: 3 lines cao, 0 ≤ p ≤ 1, scale clear (or 1 line = 1), condone lack of labels. Rulers used. 	
(c)	of labels. Rulers used. 3M1: Finding their correct optimal point, must have three lines, and setting up an equation to find 0 ≤ p ≤ 1. 1A1: CAO 2A1ft: All three options listed must ft from their p, check page 1, no negatives. 3A1: CAO	

Question	Scheme	Mark	S
5. (a)	a = 1 $b = 5$ $c = 13$ Flow = 49	B1, B1 B1, B1	(4)
(b)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1	(2)
(c)	e.g. SBEHT - 7 together with either SBEHDAFGT - 2 or SBCEHDAFGT - 2	M1 A1 A2,1,0	(4)
(d)	58	B1	(1)
(e)	e.g. C 11 C 11 0 7 5 16 8 7 16 16 7 10 7 10 12 7 10 12 7 10 12 7 10 12 7 10 12 7 10 12 7 10 12 7 10 12 7 10 12 7 10 12 7 10 12	M1 A1	(2)
(f)	Max flow = min cut Cut through HT, HG, GF, FT Value 58	M1 A1	(2) 15

	INICI KS
Notes: 1B1: $a = 1 cao$ 2B1: $b = 5 cao$ 3B1: $c = 13 cao$ 4B1: 49 cao	
1M1: Two numbers on each arc 1A1: cao	
1M1: One valid flow augmenting route found and value stated.1A1: Flow increased by at least 22A1: A second correct flow3A1: Flow increased by 9 and no more	
1B1: cao	
1M1: Consistent flow pattern > 51 1A1: cao	
1M1: Must have attempted (e), S to T, and made an attempt at a cut. 1A1: cut correct – may be drawn. Refer to max flow-min cut theorem three words out of four.	
	Notes: IB1: a = 1 cao 2B1: b = 5 cao 3B1: c = 13 cao 4B1: 49 cao IM1: Two numbers on each arc 1A1: cao IM1: One valid flow augmenting route found and value stated. 1A1: cao IM1: One valid flow augmenting route found and value stated. 1A1: cao IM1: Diversased by at least 2 2A1: A second correct flow 3A1: Flow increased by 9 and no more IB1: cao IM1: Consistent flow pattern > 51 1A1: cao IM1: Must have attempted (e), S to T, and made an attempt at a cut. 1A1: cut correct – may be drawn. Refer to max flow-min cut theorem three words out of four.

Question Number			Marks								
6.		Task A	Task B	Task C							
(a)	W/ 1 D	27	21	25							
	Worker P	27	31	25	-						
	Worker R	35	29	32							
	Let $x_{ij} = \begin{cases} 1 \text{ if} \\ \end{cases}$ Where x_{ij} indi	Let $x_{ij} = \begin{cases} 1 \text{ if worker does the task} \\ 0 \text{ otherwise} \end{cases}$ Where x_{ij} indicates worker i being assigned to task j, $i \in \{P, Q, R\}$,									
	$j \in \left\{A, B, C\right\}$										
	Minimise $27x_{PA} + 31x_{PB}$ Subject to: $x_{PA} + x_{PB} + x$ $x_{QA} + x_{QB} + x$ $x_{RA} + x_{RB} + x$ $x_{PA} + x_{QA} + x$ $x_{PB} + x_{QB} + x$ $x_{PC} + x_{QC} + x$	B1 B1 M1 A1 A1									
	~					(7)					
(b)	Since we need	M1									
		Task A	Task B	Task C							
	Worker P	8	4	10							
	Worker Q	9	5	1		Al					
	worker R	U	0	3]	(2) 9					

Question			Sc	heme		Marks					
Number			N	otos.							
(a)	1B1: defi 2B1: defi 3B1: min 4B1: cao										
	IMIT: At	least 5 equ	ations, coeffici	ents of 1. A	Accept mequanties here						
		² or precisely	9 variables.	t clock vor	isblas if defined						
	2A1 cao	6 equation	is correct accep	n slack var of slack var	iables if defined						
	2/11. 040	o equation	is conteet accep	n shuck vur	lubles il defined						
(b)	1M1: sub 1A1: corr	otracting fro	some $n \ge 4$	l condone	up to two errors						
7.		1	1	1							
(a)	Stage	State	Action	Dest.	Value						
	0	Н	H- London	London	$36 - 5 = 31^*$						
		Ι	I – London	London	$38 - 4 = 34^*$						
	1	F	FH	Н	29 - 6 + 31 = 54						
			FI	Ι	$29 - 7 + 34 = 56^*$						
		G	GH	Н	27 - 5 + 31 = 53	1M1 1A1					
			GI	Ι	27 - 6 + 34 = 55*	(2)					
	2	С	CF	F	42 - 6 + 56 = 92*	2M1 2A1					
			CG	G	42 - 5 + 55 = 92*						
		D	DF	F	41 - 6 + 56 = 91						
			DG	G	41 - 3 + 55 = 93*						
		E	EF	F	39 - 4 + 56 = 91*	3A1					
			EG	G	39 - 4 + 55 = 90	(3)					
	3	А	AC	С	22 - 5 + 92 = 109	3M1 4A1ft					
			AD	D	22 - 4 + 93 = 111*						
			AE	E	22 - 2 + 91 = 111*						
		В	BC	С	17 - 4 + 92 = 105						
			BD	D	17 - 4 + 93 = 106*	5A1ft					
			BE	E	17 - 3 + 91 = 105	(3)					
	4	London	London – A	A	-5 + 111 = 106*	4M1 6A1ft					
			London – B	В	-3 + 106 = 103						
	Optimal e	expected in	10 60 to the term of term	00		7A1ft (3)					
(b)	Optimal s	schedules a	are:								
	London ·	B1ft									
	London ·	B1									
						13					

Question Number	Scheme	Marks
(a)	Notes: Throughout section (a): • Condone lack of destination column and/or reversed stage numbers throughout. • Only penalise incorrect result in Value – ie ignore working values. • Penalise absence of state or action column with first two A marks earned only • Penalise empty/errors in stage column with first A mark earned only. 1M1: First stage completed. 1A1: CAO Penalise * errors only once in the question on the first occurrence	
	 2M1: Second stage completed. Penalise reversed states here and at end. Bod if something in each cell. 2A1: Any 2 states correct. (Penalise * errors only once in the question). 3A1: All 3 states correct. (Penalise * errors only once in the question). 3M1: 3rd stage completed. Bod if something in each cell. 4A1ft: A or B state correct. (Penalise * errors only once in the question). 5A1ft: A and B states correct. (Penalise * errors only once in the question). 5A1ft: A and B states correct. (Penalise * errors only once in the question). 4M1: 4th stage completed. Bod if something in each cell. 6A1ft: Final, state correct. (Penalise * errors only once in the question). 7A1ft: CAO 	
(b)	1B1ft: 1 route correct, consistent with their working penalise reversed states again here. Condone absence of London 2B1: both routes cao. London to London.	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA027672 June 2011

For more information on Edexcel qualifications, please visit <u>www.edexcel.com/quals</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

coveriment

Mark Scheme (Results)

Summer 2012

GCE Decision D2 (6690) Paper 1

ALWAYS LEARNING

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2012 Publications Code UA031968 All the material in this publication is copyright © Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

1st Validity (Wed/Thur 13/14th June) 3rd Validity (Tuesday 26th June) 2nd Validity (Wednesday 20th June) 4th Validity (Sunday 1st July)

12 each time

(Not classified) – 'I think this is good' add your initials. RFFU – Use it I agree Poor example – don't use it. Duplicate – I've changed the marks one this one - note marks changed. Susie will mark them up as good example once they are commissioned.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol / will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Special case for Q1

If they reduce columns then rows they get

2	2	1	3	3		[1	1	0	2	2
0	0	2	0	0		0	0	2	0	0
15	6	0	9	7	$ \rightarrow$	15	6	0	9	7
0	2	1	0	4		0	2	1	0	4
14	9	8	13	11		6	1	0	5	3

Which is a three line situation. They have not followed the instructions on the QP and so missed out the first iteration.

Please give 1M1 1A1 (if earned) for their column then row reductions, but then 2M0 (and therefore 2A0) since they have not done the first iteration of the Hungarian Algorithm.

So 1M1 1A1 2M0 2A0 then other marks as usual.

June 2012 6690 Decision Mathematics D2 Mark Scheme

Question Number	Scheme	Marks
Q1(a)	129 127 122 134 135 127 125 123 131 132 142 131 121 140 139 127 127 122 131 136 141 134 129 144 143	
	$\begin{bmatrix} 7 & 5 & 0 & 12 & 13 \\ 4 & 2 & 0 & 8 & 9 \\ 21 & 10 & 0 & 19 & 18 \\ 5 & 5 & 0 & 9 & 14 \\ 12 & 5 & 0 & 15 & 14 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & 3 & 0 & 4 & 4 \\ 0 & 0 & 0 & 0 & 0 \\ 17 & 8 & 0 & 11 & 9 \\ 1 & 3 & 0 & 1 & 5 \\ 8 & 3 & 0 & 7 & 5 \end{bmatrix}$ $\begin{bmatrix} 2 & 2 & 0 & 3 & 3 \\ 0 & 0 & 1 & 0 & 0 \\ 16 & 7 & 0 & 10 & 8 \\ 0 & 2 & 0 & 0 & 4 \\ 7 & 2 & 0 & 6 & 4 \end{bmatrix}$	1M1 1A1 2M1 2A1ft
	$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 3 & 0 & 0 \\ 14 & 5 & 0 & 8 & 6 \\ 0 & 2 & 2 & 0 & 4 \\ 5 & 0 & 0 & 4 & 2 \end{bmatrix}$	3M1 3A1ft 4A1 cso
	Allocation: A – 1, B – 5, C – 3, D – 4, E – 2.	5A1=B1 8
(b)	Cost is £ 647	B1 1 Total 9

Notes for question 1

a1M1 Reducing rows and then columns - See special case

alAl CAO

a2M1 Double covered +e; one uncovered – e; and one single covered unchanged. 2 lines needed to 3 lines needed.

a2A1ft ft on their previous table.

a3M1 Double covered +e; one uncovered – e; and one single covered unchanged. 3 lines needed to 5 lines needed. Watch out for 'slow Hungarian' (e.g. 2 'iterations' each subtracting 1), give M0 if seen.

a3A1ft ft on their previous table. Condone one 'new' error in table here.

a4A1 CSO on final table

a5A1= B1 CAO

b1B1 CAO

- a1M1 NN Each vertex visited at least once, accept 156324 across top of table (condone lack of return to start).
- a1A1 Route CAO must be stated, must return to A, accept link back to A.
- a2A1 Length CAO 100. Do not ISW if candidates then go on to double the route length.
- b1M1 Finding correct RMST (maybe implicit) 57 sufficient; or 12, 12, 15 and 18. Must have 4 arcs.
- b1A1 CAO; tree or list of arcs or 57 or 12 + 12 + 15 + 18 seen.
- b2M1 Adding 2 least arcs from A to 'tree'; 12 and 15 **or** AF and AE **or** 27 only. Must add these arcs distinctly. b2A1 CAO 84

Some candidates are starting by confirming that they should use AG as their first entering square. So if the candidate starts by finding initial shadow costs and II's to confirm that AG has the most negative II, ignore this work and start marking from their first route. Do not credit shadow costs and IIs found here.

- a1M1 A valid route, AG used as the empty square, θ 's balance. If AG not used mark as a misread.
- a1A1 A correct route, correctly stating exiting cell, up to my improved solution with no extra zeros.
- a2M1 Finding 7 shadow costs and 6 IIs.
- a2A1 Shadow costs CAO [Alt: A(17), B(18), C(18), D(0), E(2), F(-2), G(3)]
- a3A1 Improvement indices CAO
- a3M1 A valid route, their most negative II chosen, only one empty square used, θ 's balance.
- a4A1ft a correct route, correctly stating entering cell, exiting cell.
- a5A1 CSO, my solution no extra zeros.
- b1M1 Finding 7 shadow costs and all 6 IIs or at least1 negative II found.
- b1A1 Shadow costs CAO [Alt SC: A(17), B(21), C(18), D(0), E(-1), F(-2), G(3)]
- b2A1 BG = -2 found as an II.

b3A1ft CAO + conclusion. If candidates go on to perform a third iteration and determine that it is optimal, please allow this final mark. Must make link between negative II and not optimal.

Question Number	Scheme							
Q3 (a)	$\begin{array}{ c c c c c c c c }\hline D & E & F & G & Supply \\ \hline A & 15 & 3 \Box \theta & \theta & 18 \\ \hline B & 21 + \theta & 2 - \theta & \Box 3 \\ \hline C & 16 + \theta & 13 - \theta & 29 \\ \hline Demand & 15 & 24 & 18 & 13 & 70 \\ \hline \end{array}$	1M1 1A1						
	Exiting square is BF, $(\theta = 2)$.Shadow costs17191520DEFGSupply0A1512181B2323231C181129Demand1524181370	2M1 2A1						
	Improvement indices: $AF = 21 - 0 - 15 = 6$ $BG = 22 - 1 - 20 = 1$ $BD = 21 - 1 - 17 = 3$ $CD = 18 - 1 - 17 = 0$ $BF = 19 - 1 - 15 = 3$ $CE = 17 - 1 - 19 = -3$	3A1						
	Entering square CEDEFGSupplyA15 $1-\theta$ $2+\theta$ 18D232323C θ 18 $11-\theta$ 29Dem \Box nd1524181370	3M1 4A1ft						
	$\begin{array}{c cccc} Exturing square is AE, (6 = 1). \\ \hline D E F G Supply \\ \hline A 15 & 3 18 \\ \hline \end{array}$							
	Image: Boot of the second s	5A1 cso 8						
(b)	Shadow costs17161520DDEFGSupply0A15 \cdot 3184B23 \cdot 231C \cdot 11810Demand15241813	1M1 1A1						
	Improvement indices: $AE = 19 - 0 - 16 = 3$ $BF = 19 - 4 - 15 = 0$ $AF = 21 - 0 - 15 = 6$ $BG = 22 - 4 - 20 = -2$ $BD = 21 - 4 - 17 = 0$ $CD = 18 - 1 - 17 = 0$ Not optimal since a negative improvement index	2A1 3A1ft 4 Total 12						

Question Number				Sc	hem	ne				Marks
Q4 (a)		b.v r s t P o.v. r s y P	$ \begin{array}{c cccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- ()	$\begin{array}{c c} s & t \\ \hline 0 & 0 \\ \hline 1 & 0 \\ \hline 0 & 1 \\ \hline 0 & 0 \\ \hline \\ \hline \\ t \\ \hline \\ \hline 1 \\ \hline 0 \\ \hline \\ 0 \\ \hline \\ 1 \\ \hline \\ 1 \\ \hline \\ 2 \\ \hline \\ 1 \\ \hline \\ 4 \\ \hline \\ 7 \\ \hline \end{array}$	value5360value $\frac{17}{4}$ 6 $\frac{3}{2}$ 21	$\frac{\theta \text{ values}}{10}$ $\frac{-\frac{3}{2}}{\frac{3}{2}}$ $\frac{3}{2}$ Row ops $R1-\frac{1}{2}R3$ $R2+2R3$ $R3 \div 4$ $R4+7R3$	1M1 1A1 B1 2M1 2A1 5
(b) (c)	$P = \frac{21}{2} - 9x - \frac{13}{2}z - \frac{13}{2}$	$-\frac{7}{4}t$,	so inc	P + the stream of the stream o	9x +	<u>13</u> 2	$\frac{4}{z + \frac{7}{2}}$	$\frac{2}{4}t = \frac{21}{2}$ would d	lecrease P	M1 A1 2 B1 1 Total 8

a1M1 Correct pivot located, attempt to divide row. If choosing negative number as pivot M0B0M0

a1A1 pivot row correct including change of b.v.

a1B1 Row operations CAO – allow if given in terms of old row 3.

a2M1 (ft) Correct row operations used at least once, column x, z, t or value correct.

a2A1 CAO on the three non-pivot rows.

b1M1 One equal sign, P, terms in *x*, *z*, *t* plus a non-zero number term.

b1A1 CAO

c1B1 **Explanation**, must refer to increasing *x*, *z* and *t*, condone no ref to x = z = t = 0, must have correct signs in equation in (b). Do not accept 'no negatives in profit row' o.e. alone.

Notes on question 5

a1B1 CAO. Accept 'air dominates land' etc. Must have a named row dominating a named row

b1M1 Setting up three probability equations, implicit definition of p.

b1A1 CAO

b2M1 Three lines drawn, accept p > 1 or p < 0 here. Must be functions of p.

b2A1 CAO $0 \le p \le 1$, scale clear (or 1 line = 1), condone lack of labels. Rulers used.

b3DM1 Must have drawn 3 lines. Finding their correct optimal point, must have three lines and set up an equation to find $0 \le p \le 1$. If solving each pair of SE's must clearly select the correct one or M0, but allow recovery if their choice is clear from (c).

b3A1 CAO 5/9

b4A1ft All three options listed must ft from their p, check page 1, no negatives.

c1B1 CAO

Question Number	Scheme	Marks							
Q5 (a)	Row 1 (air) dominates row 3(land), (so Row 3 can be deleted)	B1							
(b)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
	Let Goodie play row 1 with probability p , and row 2 with probability $1 - p$.								
	If F plays 1 G's expected winnings are $0 + 2(1-p) = 2 - 2p$ If F plays 2 G's expected winnings are $4p - 3(1-p) = 7p - 3$ If F plays 3 G's expected winnings are $5p + (1-p) = 4p + 1$	1M1 1A1							
	Expected winnings 4p + 1 7p - 3 2 - 2p	2M1 2A1							
	$\begin{array}{c c} 0 \\ \hline P = 0 \\ \hline -2 \\ \hline -4 \end{array} \qquad \begin{array}{c} Optimal \\ point \end{array} \qquad \begin{array}{c} P = 1 \\ P = 1 \end{array}$								
	7p - 3 = 2 - 2p $9p = 5$	3DM1							
	$p = \frac{5}{9}$ Goodie should play								
	Row 1 (air) with probability $\frac{5}{9}$, row 2 (sea) with probability $\frac{4}{9}$ and never row 3								
(c)	(land). The value of the game to Goodie is $\frac{8}{9}$.	B1 1 Total 9							

- a1B1 CAO
- b1M1 Two numbers on each arc
- b1A1 CAO do give bod since they might well cross these number out.
- c1M1 One valid flow augmenting route found and a valid value stated.
- c1A1 Flow increased by at least 2
- $c2M1 \ \ A \ second \ correct \ flow \ route \ and \ value \ correct.$
- c2A1 CSO Flow increased by 5 and no more.
- d1M1 Consistent flow pattern \geq 48. One number only per arc. No unnumbered arcs.
- d1A1 CAO must follow from their routes.

e1M1 Must have attempted (d) - at least one number on all but one arc, and made an attempt at a cut, condone one missing arc if listed. (Accept sum of arcs as evidence of cut here only.)

e1A1CSO For (d) and (e) Cut and (d) correct, Cut may be drawn. Must refer to max flow-min cut theorem three words out of four.

Question Number	Scheme	Marks
Q7	Let x_{ij} be 0 or 1	
	$\int 1$ if worker (i) does task (j)	B1
	0 otherwise	
	where $i \in \{A, B, C, D\}$ and $j \in \{P, Q, R, S\}$	
	minimise $P = 23x_{AP} + 41x_{AQ} + 34x_{AR} + 44x_{AS}$	
	$+21x_{BP}+45x_{BQ}+33x_{BR}+42x_{BS}$	1M1 1A1
	$+26x_{CP} + 43x_{CQ} + 31x_{CR} + 40x_{CS}$	
	$+20x_{DP} + 47x_{DQ} + 35x_{DR} + 46x_{DS}$	
	Subject to	
	$x_{AP} + x_{AQ} + x_{AR} + x_{AS} = 1$ or $\sum x_{Aj} = 1$	
	$x_{BP} + x_{BQ} + x_{BR} + x_{BS} = 1$ or $\sum x_{Bj} = 1$	2M1
	$x_{CP} + x_{CQ} + x_{CR} + x_{CS} = 1$ or $\sum x_{Cj} = 1$	
	$x_{DP} + x_{DQ} + x_{DR} + x_{DS} = 1$ or $\sum x_{Dj} = 1$	2A1 3M1
	$x_{AP} + x_{BP} + x_{CP} + x_{DP} = 1$ or $\sum x_{iP} = 1$	
	$x_{AQ} + x_{BQ} + x_{CQ} + x_{DQ} = 1$ or $\sum x_{iQ} = 1$	
	$x_{AR} + x_{BR} + x_{CR} + x_{DR} = 1$ or $\sum x_{iR} = 1$	3A1 7
	$x_{AS} + x_{BS} + x_{CS} + x_{DS} = 1$ or $\sum x_{iS} = 1$	10tal /

- 1B1 Defining variables fully both 'bits' values and subscripts. Penalise poor variable choice, (AP etc.) here.
- 1M1 Attempt at a 16 term expression, coefficients 'correct', but condone 2 slips.
- 1A1 CAO + minimise. Penalise reversed subscripts once only per question.
- 2M1 Four eqns, each in four vars, coeffs of 1, all 16 vars included, = 1, accept $\leq 1, \geq 1$ here for this M only
- 2A1 Any 4 CAO. Penalise reversed subscripts once only per question.
- 3M1 All 8 equations, each in four variables, unitary coefficients, all 16 variables included = 1.
- 3A1 CAO. Penalise reversed subscripts once only per question.

Notes for question 8 – see alts too

<u>ALL M marks - Must bring earlier optimal results into calculations. Ignore extra rows. Must have</u> necessary right 'ingredients' (– storage costs, overheads, extra worker costs) at least once per stage.

1M1 First stage completed. 3 rows.

- 1A1 CAO condone missing * here. No extra rows.
- 2M1 Second stage completed. Expect 3 states.
- 2A1ft Any 2 states correct. Ft for * values only No missing/extra rows. (Penalise * errors only once in the qn).
- 3A1 CAO All 3 states correct. No missing rows. (Penalise * errors only once in the question).
- 3M1 3rd stage completed. Expect 3 states.
- 4A1ft Any state correct. Ft on * values only. No missing rows. (Penalise * errors only once in the qn).
- 5A1ft Any 2 states correct. Ft on * values only. No missing rows. (Penalise * errors only once in the qn).
- 6A1 CAO All 3 states correct. No missing/extra rows. (Penalise * errors only once in the question).
- $4M1 \quad 4^{th}$ stage completed.
- 7A1 CAO Final, state correct. No missing/extra rows. (Penalise * errors only once in the question).
- 1B1 CAO. Must have attempted algorithm, getting at least one M mark.
| Question
Number | | | | 9 | Scheme | | Marks |
|--------------------|------|-------|-------|-------------------|--------|-------------------------|----------------|
| Q8 | E.g. | , | | | | | |
| | | Stage | State | Action | Dest. | Value | |
| | | April | 0 | 4 | 0 | 400+ $300 = 700*$ | 1M1 1A1 |
| | | (4) | 1 | 3 | 0 | 150+300 = 450* | 11VII 1A1
2 |
| | | | 2 | 2 | 0 | 300+300 = 600* | 2 |
| | | March | 0 | 3 | 0 | 300+700 = 1000* | 2M1 |
| | | (3) | | 4 | 1 | 400+ $300+450 = 1150$ | |
| | | | 1 | 2 | 0 | 150+300+700 = 1150 | 2A1ft |
| | | | | 3 | 1 | 150+300+450 = 900* | |
| | | | | 4 | 2 | 400+150+300+600 = 1450 | |
| | | | 2 | 1 | 0 | 300+300+700 = 1300 | |
| | | | | 2 | 1 | 300+300+450 = 1050* | 3A1 |
| | | | | 3 | 2 | 300+300+600 = 1200 | 3 |
| | | Feb. | 0 | 2 | 0 | 300+1000 = 1300 | |
| | | (2) | | 3 | 1 | 300+900 = 1200* | 3M1 |
| | | | | 4 | 2 | 400 +300+1050 =1750 | 4A1ft |
| | | | 1 | 1 | 0 | 150+300+1000 = 1450 | 5 1 1 64 |
| | | | | 2 | 1 | 150+300+900 = 1350* | SAIII |
| | | | | 3 | 2 | 150 + 300 + 1050 = 1500 | |
| | | | 2 | 0 | 0 | 300+ $1000 = 1300*$ | 641 |
| | | | | 1 | 1 | 300+300+900 = 1500 | |
| | | | | 2 | 2 | 300+300+1050 =1650 | - |
| | | Jan. | 0 | 2 | 0 | 300+1200 = 1500* | 4M1 7A1 |
| | | (2) | | 3 | 1 | 300+1350 = 1650 | 2 |
| | | | | 4 | 2 | 400 + 300 + 1300 = 2000 | |
| | | | | | | | |
| | | | - | Month | Ion | Fab March April | D1 1 |
| | | | Nun | wonun
abar mad | | 2 2 2 2 | DI I |
| | | | INUI | | | 5 5 5 | Total 12 |
| | | | | | | | 10tal 12 |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA031965 Summer 2012

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Alt correct solution - adding	the storage co	osts at start of month.
-------------------------------	----------------	-------------------------

Stage	State	Action	Dest	Value	
April	0	4	0	$400 + 300 = 700^*$	1M1
(4)	1	3	0	300 = 300*	1A1
	2	2	0	300 = 300*	
March	0	3	0	$300 + 700 = 1000^{*}$	2M1
(3)		4	1	400 + 150 + 300 + 300 = 1150	
	1	2	0	300 + 700 = 1000	
		3	1	$150 + 300 + 300 = 750^{*}$	2A1ft
		4	2	400 + 300 + 300 + 300 = 1300	
	2	1	0	300 + 700 = 1000	
		2	1	$150 + 300 + 300 = 750^{*}$	3A1
		3	2	300 + 300 + 300 = 900	
Feb	0	2	0	300 + 1000 = 1300	
(2)		3	1	150 + 300 + 750 = 1200*	3M1
		4	2	400 + 300 + 300 + 750 = 1750	4A1ft
	1	1	0	300 + 1000 = 1300	
		2	1	150 + 300 + 750 = 1200*	5A1ft
		3	2	300 + 300 + 750 = 1350	
	2	0	0	$1000 = 1000^{*}$	
		1	1	150 + 300 + 750 = 1200	6A1
		2	2	300 + 300 + 750 = 1350	
Jan	0	2	0	300 + 1200 = 1500*	4M1
(2)		3	1	150 + 300 + 1200 = 1650	
		4	2	400 + 300 + 300 + 1000 = 2000	7A1

Month	Jan	Feb	March	April	
Number made	2	3	3	3	B1

Stage	State	Action	Dest	Value	
Jan	0	2	0	$300 = 300^*$	1M1
(2)		3	1	300 = 300*	1A1
		4	2	$400 + 300 = 700^*$	
Feb	0	2	0	300 + 300 = 600*	2M1
(2)		3	1	300 + 300 = 600*	
		4	2	400 + 300 + 300 = 1000	
	1	1	0	150 + 300 + 300 = 750	
		2	1	150 + 300 + 300 = 750	
		3	2	$150 + 300 + 300 = 750^{*}$	2A0
	2	0	0	300 + 700 = 1000	
		1	1	300 + 300 + 700 = 1300	
		2	2	300 + 300 + 700 = 1300	3A0
March	0	3	0	300 + 600 = 900*	3M1
(3)		4	1	400 + 300 + 600 = 1300	4A0
	1	2	0	$150 + 300 + 600 = 1050^{*}$	
		3	1	150 + 300 + 600 = 1050	
		4	2	400 + 150 + 300 + 600 = 1450	5A0
	2	1	0	300 + 300 + 750 = 1350	
		2	1	300 + 300 + 750 = 1350	
		3	2	300 + 300 + 750 = 1350*	6A0
April (4)	0	4	0	400 + 300 + 900 = 1600	4M1
	1	3	0	150 + 300 + 1050 = 1500*	
	2	2	0	300 + 300 + 1350 = 1950	7A1

Month	Jan	Feb	March	April	
Number made	2	3	3	3	B1

Stage	State	Action	Dest	Value	
Jan	0	2	0	$300 = 300^*$	1M1
(2)		3	1	$150 + 300 = 450^*$	1A1
		4	2	$400 + 300 + 300 = 1000^{*}$	
Feb	0	2	0	300 + 300 = 600*	2M1
(2)		3	1	150+ 300 + 300 = 750*	
		4	2	400 + 300 + 300 + 300 = 1300	
	1	1	0	300 + 450 = 750	
		2	1	150 + 300 + 450 = 900	
		3	2	300 + 300 + 450 = 1050*	2A0
	2	0	0	1000 = 1000	
		1	1	150 + 300 + 1000 = 1450	
		2	2	300 + 300 + 1000 = 1600	3A0
March	0	3	0	300 + 600 = 900*	3M1
(3)		4	1	400 + 150 + 300 + 600 = 1450	4A0
	1	2	0	300 + 750 = 1050	
		3	1	$150 + 300 + 750 = 1200^*$	
		4	2	400 + 300 + 300 + 750 = 1750	5A0
	2	1	0	300 + 1050 = 1350	
		2	1	150 + 300 + 1050 = 1500	
		3	2	300 + 300 + 1050 = 1650*	6A0
April (4)	0	4	0	400 + 300 + 900 = 1600	4M1
	1	3	0	300 + 1200 = 1500*	
	2	2	0	300 + 1650 = 1950	7A1

Special Case 2: Working forward Max 7/12 ver
--

Month	Jan	Feb	March	April	
Number made	2	3	3	3	B1

Stage	State	Action	Dest.	Value	
April	0	4	0	400+ $300 = 700*$	1M1
(4)	1	3	0	150+300 = 450*	1A1 CAO
	2	2	0	300+300 = 600*	
March	0	3	0	300+700 = 1000*	2M1
(3)	1	2	0	150+300+700 = 1150	
	2	1	0	300+300+700 = 1300	
	0	4	1	400+ $300+450 = 1150$	
	1	3	1	150+300+450 = 900*	2A0
	2	2	1	300+300+450 = 1050*	
	1	4	2	400+150+300+600 =1450	3A0
	2	3	2	300+300+600 = 1200	
Feb.	0	2	0	300+1000 = 1300	3M1
(2)	1	1	0	150+300+1000 = 1450	4A0
	2	0	0	300+ $1000 = 1300*$	
	0	3	1	300+900 = 1200*	
	1	2	1	150+300+900 = 1350*	5A0
	2	1	1	300+300+900 = 1500	
	0	4	2	400 +300+1050 =1750	
	1	3	2	150+300+1050 = 1500	6A0
	2	2	2	300+300+1050 =1650	
Jan.	0	2	0	300+1200 = 1500*	4M1
(2)	0	3	1	300+1350 = 1650	
	0	4	2	400 + 300 + 1300 = 2000	7A1 CAO

Special Case 3: Reversed states Max 7/12 version 1

Month	Jan	Feb	March	April	
Number made	2	3	3	3	B1

Stage	State	Action	Dest	Value	
April	0	4	0	$400 + 300 = 700^*$	1M1
(4)	1	3	0	300 = 300*	1A1 CAO
	2	2	0	$300 = 300^*$	
March	0	3	0	$300 + 700 = 1000^*$	2M1
(3)	1	2	0	300 + 700 = 1000	
	2	1	0	300 + 700 = 1000	2A0
	0	4	1	400 + 150 + 300 + 300 = 1150	
	1	3	1	$150 + 300 + 300 = 750^{*}$	
	2	2	1	$150 + 300 + 300 = 750^{*}$	
	1	4	2	400 + 300 + 300 + 300 = 1300	
	2	3	2	300 + 300 + 300 = 900	3A0
Feb	0	2	0	300 + 1000 = 1300	3M1
(2)	1	1	0	300 + 1000 = 1300	4A0
	2	0	0	1000 = 1000*	
	0	3	1	$150 + 300 + 750 = 1200^*$	
	1	2	1	150 + 300 + 750 = 1200*	5A0
	2	1	1	150 + 300 + 750 = 1200	
	0	4	2	400 + 300 + 300 + 750 = 1750	
	1	3	2	300 + 300 + 750 = 1350	6A0
	2	2	2	300 + 300 + 750 = 1350	
Jan	0	2	0	300 + 1200 = 1500*	4M1
(2)		3	1	150 + 300 + 1200 = 1650	
		4	2	400 + 300 + 300 + 1000 = 2000	7A1 CAO

Special Case 4: Reversed states Max 7/12 version 2

Month	Jan	Feb	March	April	
Number made	2	3	3	3	B1

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA031968 Summer 2012

For more information on Edexcel qualifications, please visit our website $\underline{www.edexcel.com}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2013

GCE Decision Mathematics 2 (6690/01R)

ALWAYS LEARNING

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013 Publications Code UA035695 All the material in this publication is copyright © Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

Question Number	Scheme	Marks					
1.(a)	Subtracting all elements from some n \geq 228	1M1					
	Reducing rows and then columns to get	2M1					
	011161400000172017then06430171816062201625180594	1A1					
	Using two lines and 2 to get	3M1					
	2 0 0 0 0 4 2 1 0 4 0 0 0 3 7 2	2A1					
	Using three lines and 1 to get	4M1					
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3A1ft 4A1 (8)					
(b)	So $C = 2$, $J = 4$, $K = 3$ and $N = 1$ maximum profit of £664	M1 A1 (2) 10 marks					
	Note ' minimise' gives this special case						
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
	Gives 5 max: (a) 1M0 2M1 1A1 3M0 2A0 4M1 3A1ft 4A0 (b) M1A0						
	Notes for Question 1	• 					
a1M1: Subtracting a a2M1: Reducing row a1A1: CAO a3M1: Double covere	Il elements from some $n \ge 228$, condone up to 2 errors s and then columns ed +e; one uncovered – e; and one single covered unchance	ied. 2 lines					
needed to 3 lines needed.							
a2A1: CAO a4M1: One double co	overed +e; one uncovered – e; and one single covered unc	hanged. 3 lines					
needed to 4 lines nee	eded.	5					
a4A1: CSO on final t	able						
b1M1: Their optimal this mark is depende b1A1: CAO	allocation (of workers to tasks) and an attempt to calculate ent on all M marks in (a) have been earned.	e the profit –					

Questi on Numbe r	Scheme	Marks			
2 (a)	Fα				
2.(4)	If use CD as shortcut get 807 or if use CF + AD get 793	M1 A1 (2)			
(b)	A F E D B C A 82 113 98 130 110 217 = 750	B1 B1 (2)			
(c)	length of RMST = 439	B1			
	439 + 82 + 113 = 634	M1 A1 (3)			
(d)) 634 < optimal ≤750				
	Notes for Question 2	marks			
a1M1: Th a1A1: CA	eir plausible shortcut leading to a value < 810 and a length below 8 O – shortcut and length must be consistent.	310 stated.			
(Example DF + FC :	s shortcuts: CD = 807, CF + AD = 793, CF + BD = 664, AD + EF - = 785 etc.)	+ FC = 715,			
b1B1: CA b2B1: CA c1B1: CA c1M1: Ad c1A1: CA d1B1: An	O O O ding two least weighted arcs to their RMST length O interval that incorporates their lower bound from (c) and their best	t upper bound			
from eith	er (a) or (b)				

Question Number	Jestion Number Scheme						
3.(a)	The solution would otherwise be degenerate	B1	(1)				
(b)	22 36 31 46 1 2 3 4 0 A x x -12 -9 -1 B 8 x x -9	M1 A1					
	$\begin{array}{cccc} -6 & \mathbf{C} & (8) & (2) & \mathbf{x} & (1) \\ -8 & \mathbf{D} & (9) & (2) & \mathbf{x} & \mathbf{x} \end{array}$	M1 A1	(4)				
(c)	Route is e.g. A3 – B3 – B2 – A2 entering cell A3, Exiting cell B3	M1 A1 A1	(3)				
			8 marks				
	Notes for Question 3						
a1B1: CAO b1M1: 8 shadow costs s b1A1: CAO b2M1: Remaining 4 IIs b2A1: CAO c1M1: A valid route (po used, θ's balance. c1A1: CAO – stepping s c2A1: CAO for entering	stated. stated. ssibly drawn), their most negative II chosen, only or tone route stated or clearly shown on separate diag and exiting cells.	ne empty s grams	square				
(b) Alternative shado 1(0) 2(14) 3 A(22) B(21) C(w costs: (9) 4(24) 16) D(14)						

Question Number	Scheme	Marks
4.	R1 dominates R2, so deleted R2 to give	
	2 1 3 -1 3 -3	B1
	If S plays 1; R's gain is $2p - (1 - p) = 3p - 1$ If S plays 2; R's gain is $p + 3(1 - p) = 3 - 2p$	M1
	If S plays 3; R's gain is $3p - 3(1 - p) = 6p - 3$	A1
	$3 \bullet -3$ $2 \bullet -3$ $2 \circ -3 \bullet -3$ $3 \circ 6p - 3$ $2 \circ 3p - 1$ $1 \circ -2 \circ -2$ $-3 \bullet -3$	B1ft B1
	3 - 2p = 3p - 1 giving $p = 4/5$	M1 A1
	Robin should play R1 with probability 4/5	
	R2 never	A1ft
	The value of the game is 7/5 to Robin	A1
		9 marks
	Notes for Question 4	
1M1: Setting u 1A1: CAO (cor 2B1ft: Attemp accept $p > 1$ c 3B1: CAO 0 \leq 2M1: Finding t and set up an Solving all thre	up three probability expressions, implicit definition of 'p'. adone incorrect simplification) t at three lines (correct gradients and correct order of intersection we or $p < 0$ here. Must be functions of p. $p \le 1$, scale clear (or 1 line = 1), condone lack of labels. Rulers use heir correct optimal point, must have three lines and three intersect equation to find $0 \le p \le 1$. Dependent on the second B mark being be simultaneous equations only is MO.	vith 'axes'), ed. tion points earned.

2A1: CSO (all previous marks must have been awarded) 3A1ft: All three options listed must ft from their p, check page 1 for R should never play 2. $0 \le \text{probabilities} \le 1$ Dependent on **both** previous M marks being awarded.

4A1: CAO for the value of the game (7/5)

Question Number	Scheme								Marks	
5. (a)	b.v	X	y	Ζ	r	S	t	Value	Row ops	
		1	0	0	1	1	2	11	1	
	r	$\frac{4}{5}$	0	0	I	$\frac{1}{5}$	$-\frac{5}{5}$		$R_1 + \frac{1}{2}R_2$	M1 A1
	У	$\frac{3}{5}$	1	0	0	$\frac{2}{5}$	$-\frac{1}{5}$	2	$R_2 \div 2.5$	
	Ζ	$\frac{1}{5}$	0	1	0	$-\frac{1}{5}$	$\frac{3}{5}$	4	$R_3 - \frac{1}{2}R_2$	
	Р	1	0	0	0	4	18	240	$R_4 + 10R_2$	
									M1 A1 A1 (5)	
(b)	P + x + 4s + 18t = 240							B1 (1)		
(c)	P = 240 - x - 4s - 18t and at present <i>x</i> , <i>s</i> and <i>t</i> are zero. If we increase any of these the profit will decrease.							B2, 1, 0 (2)		
										8 marks
				Not	tes fo	or Que	estion	5		
a1M1: correct a1A1: pivot ro a2M1: (ft) One	pivot le w corre e row (ocated, a ect incluc excludinc	ttem ling c 1 the	pt to hang pivot	divid e of k row)	e row. o.v. corre	If cho	osing ne ne colun	gative pivot MO	MO. lue, <i>x, s</i> or <i>t</i>
column correct	. `		,	•	,					
a2A1ft: Correc	a2A1ft: Correct row operations used at least once. One column either the value, x, s or t									
column correct on the ft.										
C1B1: CAU	eir nro	fit equat	ion te	mak	re a r	ortino	nt stat	ement	Maybe muddled	if bod aive
this mark only	. No 'n	egatives'	in th	eir pr	rofit e	equation	ni siai n.	chient.	maybe muduleu,	n bou give
c2B1: Good ex	planat	ion – dep	ende	ent or	the	correc	t equa	tion beir	ng stated in (b).	

Question Number	Scheme	Marks
		13 marks

Notes for Question 5

a1B1: CAO

b1M1: All relevant arcs added OR all arcs and numbers from supersource OR from supersink correct.

b1A1: CAO all arcs and numbers correct.

c1M1: 2 numbers and arrows on each arc.

c1A1: CAO Condone 4 errors.

c2A1: CAO.

d1M1: One valid flow augmenting route (from S to T) found and a value stated.

d1A1: Flow increased by 5 and no more.

d2A1: CAO 98 (allow if seen in (f) but must be clearly labelled as the maximum flow)

e1M1: Consistent flow pattern > 95 - condone S and T's presence. Must have exactly one number on each arc.

e1A1: CAO must follow from their routes (allow if routes in (d) do not include S and/or T). f1M1: Must have attempted (e) and made an attempt at a cut.

f1A1: cut correct – may be drawn. Must have shown a correct flow of 98 in (e). Refer to max flow-min cut theorem all four words.

Examples of flow augmenting routes:

- SACDGFIT (3), SACDGIT (2)
- SBEDGFIT (3), SBEDGIT (2)
- SBEDGFIT (3), SACDGIT (2)
- SACDGFIT (3), SBEDGIT (2)

Question Number	Scheme	Marks
7.	E.g. Add 4 to each element	B1
	Let p_1 , p_2 , p_3 be the probability of (A) playing 1, 2 and 3 respectively	B1
	(where p_1 , p_2 , $p_3 \ge 0$) let V = value of the game (to player A)	B1
	maximise $P = V$	B1
	subject to:	
	$5p_1 + 2p_2 + 9p_3 \ge V$	M1 A1
	$p_1 + /p_2 + 3p_3 \ge V$	
	$p_1 + 3p_2 + 4p_3 \ge v$ $p_1 + p_2 + p_3 \le 1$	Δ1
	$p_1 + p_2 + p_3 \le 1$	(7)
		7
		marks
	Notes for Question 7	
1B1: Making all terr	ns non-negative.	
2B1: Defining proba	ability variables	
3B1: Defining V		
4B1: 'maximise' + f	unction/expression	
1 A1. The three inco	equations/inequations in (V), p_1 , p_2 and p_3	
1A1: The three lifed	publices in v, μ_1 , μ_2 and μ_3 CAO minoquality (or equation) correct	
I TAT. Probability Sul		

Question Number				Scheme	Scheme							
8	Stage	State	Action	Dest	Value							
0.	Fresh	0	0	0	0							
	110511	1	1	0	45							
		2	2	0	85	1M1 1A1						
		3	3	0	120	(stage 1)						
		4	4	0	150							
		5	5	0	175							
	Frozen	0	0	0	0							
		1	1	0	$45 + 0 = 45^*$							
			0	1	$0 + 45 = 45^*$							
		2	2	0	70 + 0 = 70							
			1	1	$45 + 45 = 90^*$	2M1 2A1						
			0	2	0 + 85 = 85	(1 st 4 states of						
		3	3	0	100 + 0 = 100	stage 2)						
			2	1	70 + 45 = 115							
			1	2	45 + 85 = 130*	3A1						
			0	3	0 + 120 = 120	(state 3)						
		4	4	0	120 + 0 = 120							
			3	1	100 + 45 = 145							
			2	2	70 + 85 = 155	3M1 4A1						
			1	3	45 + 120 =	(Last 2						
			0	1	165°	states						
		5	5	4	0 + 130 = 130	UI Stage 2)						
		5	5 4	1	$130 \pm 0 = 130$ $120 \pm 45 = 165$							
			3	2	120 + 45 = 105 100 + 85 = 185							
			2	3	70 + 120 = 190	5A1						
			-		45 + 150 =							
			1	4	195*	(state 5)						
			0	5	0 + 175 = 175							
	Canned	5	5	0	195 + 0 = 195							
			4	1	155 + 45 = 200							
			3	2	125 + 90 = 215*	4M1 6A1ft						
			2	3	75 + 130 = 205	(3 rd stage)						
			1	4	35 + 165 = 200							
			0	5	0 + 195 = 195							
		4 F										
	Fresh =	I, Frozei	n = 1, Car	nned = 3		5IVI 1						
	ivionthiy	income =	±21500			/AIIT						
						12 marks						

Notes for Question 8

- ALL M marks Must bring earlier optimal results into calculations. Must have necessary right 'ingredients' (profit values from the table) at least once per stage.
- Penalise inconsistency/errors with the state/destination columns with the first two A marks earned only.
- Penalise empty/errors in stage column with first A mark earned only.

1M1: First stage completed (bod something in each cell). Condone missing state 0 for this mark. Must have columns for stage, state, value and one of either action or destination.

1A1: CAO for first stage – condone missing * in this stage.

2M1: Second stage – states 0, 1 and 2 complete (bod something in each cell). Condone missing state 0 for this mark.

2A1: States 0, 1 and 2 correct for second stage. Penalise * errors only twice in the question on the first occurrences.

3A1: State 3 correct for second stage. Penalise * errors only twice in the question. 3M1: Second stage – states 3 and 4 complete (bod something in each cell).

4A1: State 4 correct for second stage. Penalise * errors only twice in the question.

5A1: State 5 correct for second stage. Penalise * errors only twice in the question.

4M1: Third stage complete (bod something in each cell).

6A1ft: Third stage correct (ft from previous stage). Penalise * errors only twice in the question.

5M1: For Fresh = 1, Frozen = 1, Canned = 3 - dependent on all previous M marks having been awarded.

7A1ft: Income correct for their table. Must have earned the first 4 M marks only (**not** dependent on 5M1).

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA035695 Summer 2013

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2013

GCE Decision Mathematics 2 (6690/01)

ALWAYS LEARNING

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013 Publications Code UA035688 All the material in this publication is copyright © Pearson Education Ltd 2013

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

Question Number	Scheme	Marks
(f)	The route is ABDECA (The optimal route length is 78, since upper bound = lower bound)	
	a1M1 First three arcs (or all 5 nodes / or numbers across the top of the matrix) selected correctly (may start from any node). Award M1 only for a correct tree with no working. a1A1 CAO (order of arc selection clear)	
	b1B1 112 CAO	
	c1M1 Nearest Neighbour either A-B-C-E-D- or A-B-D-E-C- (condone lack of return to start). Accept 12354 or 12534 across the top of the matrix. c1A1 1 route and length CAO (Do not ISW if route length is doubled) c2A1 both routes and lengths CAO (Do not ISW if route lengths are doubled)	B1 (1) Total 12
	d1B1ft their stated shortest (must be a number)	
	 e1M1 Finding correct RMST (maybe implicit) 48 sufficient, or correct numbers. 3 arcs. e1A1 CAO; tree or 48 or 11 + 18 + 19 seen. e2M1 Adding 2 least arcs to B; 15 and 15 or two out of BA, BC or BD or 30 only e2A1 CAO 78 	
	f1B1 CAO, accept any start point for the correct tour, but must return to start. Dependent on their answer to part (d) = their answer to part (e).	

Question Number	Scheme								
2(a)	123SupplyA1818B9514C13821D1212Demand271820	B1 (1)							
(b)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1A1 (2)							
(c)	Shadow costs 10 22 19 1 1 2 3 0 A X -11 1 -15 B 20 X 9 -7 C 21 X X -1 D X 0 X	1M1A1							
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2M1A1 (4)							

Question Number	Scheme	Marks
Question Number (d)	Scheme Shadow 10 11 8 a 1 2 3 0 A X x 12 4 B 9 X 12 4 C 10 X X 1 D X 11 11 5 4 C 10 X X 10 X X 11 11 11 11 CAO Stalance D1, used, 0's balance. D1 Correct route, up to an improvement indices 11 Shadow costs [Alt: A(10), B(-5), C(3), D(9), 1(0), 2(12), 3(9)] and improvement indices CAO 12A1 Cost (entering A2, and exiting D3 stated) Cost (entering A2, and exiting D3 stated) MIA 13A1 CAO for the shadow costs [Alt: A(10), B(6)	Marks M1 A1 A1 (3) Total 10

Question Number	Scheme	Marks
3(a)	Initial flow = 44	B1
(b)	Value of cut = $12+7+4+10+2+5+31 = 71$	B1 (2)
(c)	e.g.SACFHT – 3; SADGIT – 4; SBEDFHT – 2	
	e.g. SACFHT – 3; SADFHT – 2; SADGIT – 2; SBEDGIT - 2	M1A1;A1; A1
(d)	e.g.	(4)
	and the second s	M1A1 (2)
(e)	Maximum flow=minimum cut	DM1
	e.g. cut through CH, CF, AD, BD, DE, EG and EI a1B1 CAO b1B1 CAO	A1 (2) Total 10
	c1M1 One valid flow augmenting route found and a value stated.	
	c1A1 Flow increased by at least 2 c2A1 A second correct flow route (and value at least 2) correct	
	c3A1 CSO Flow increased by 9 and no more.	
	number per arc)	
	d1A1 CAO, showing flow of 53, must follow from their routes. e1DM1 Must have attempted (d) and made an attempt at a cut	
	e1A1 cut correct – may be drawn. Refer to max flow-min cut theorem all	
	four words (alternative cut: CH, CF, AD, BD, BE).	
	Guidance for 3(c)	
	SA +7SB +2AC +3AD +4BD noneBE + 2ED + 2CH noneCF +3EG noneEI none	
	(DF+2 DG+2 FH+5 FT none FI none GI +4 HT +5 IT +4)	

Question Number	Scheme	Marks
4(a)	$\begin{bmatrix} 4 & -6 \\ -2 & 3 \\ -1 & 2 \end{bmatrix}$ column 2 dominates column 1	B1 (1)
(b)	$\begin{bmatrix} -4 & 2 & 1 \\ 6 & -3 & -2 \end{bmatrix}$	B1 B1 (2)
(c)	Let p = probability that B plays new row 1 If A plays 1: B's expected winnings = $-4p + 6(1-p) = 6 - 10p$ If A plays 2: B's expected winnings = $2p - 3(1-p) = -3 + 5p$ If A plays 3: B's expected winnings = $p - 2(1-p) = -2 + 3p$	1M1A1 (2)
	$ \begin{array}{c} 6 \\ 4 \\ $	B2, 1ft, 0 (2)
	6-10p = -2+3p 8=13p $p = \frac{8}{13}$ B should play 1: never, play 2 with probability $\frac{8}{13}$ and play 3 with probability $\frac{5}{13}$	2M1 A1 (2)
	The value of the game is $-\frac{2}{13}$ to B	B1 B1 (2)
		Total 11

Question Number	Scheme	Marks									
	a1B1 CAO (accept reduced matrix or 'column 2 dominates column 1' or column crossed out). Allow recover in part (b)										
	 b1B1 either 3 × 2 matrix with correct values (including signs) or 2 × 3 matrix with correct values (condone incorrect signs) b2B1 CAO 										
	c1M1 Setting up three probability expressions, implicit definition of 'p'. c1A1 CAO (condone incorrect simplification) c1B1ft Attempt at three lines (correct gradients and intersection with 'axes'), accept $p > 1$ or $p < 0$ here. Must be functions of p. c2B1 CAO $0 \le p \le 1$, scale clear (or 1 line = 1), condone lack of labels. Pulars used										
	c2M1 Finding their correct optimal point, must have three lines and set up an equation to find $0 \le p \le 1$. Dependent on first B mark in part (c). Must have three intersection points. Solving all three simultaneous equations only is M0. c2A1 CSO										
	c3B1 All three options listed must ft from their p, check page 1 for B should never play 1. $0 \le$ probabilities ≤ 1 . c4B1 -2/13 CAO (accept awrt 0.154)										
	 SC1: If column 2 deleted in (a) candidates can earn a maximum of (a) B0 (b) B1 B0 (c) M1 A0 B1 B0 M1 A0 B1 B1 (max. of 6) – the final B mark is for the value of the game being -4/3 										
	SC2: If column 3 is deleted in (a) candidates can earn a maximum of(a) B0 (b) B1 B0 (c) M1 A0 B1 B0 M0 A0 B0 B0										
Question Number	Scheme										Marks
--------------------	---------	------------------------	---------------	----------	----------------	---------	----------------	-------------	------------------------	-----------------------------------	--------------
5(a)	Varial	ole z v	vas in	crease	d first	since	e it ha	s become	a basic var	iable	
										B1	
	b.v	x	V	Z	r	S	t	value			
(b)	r	-1	2	0	1	0	1	8			
	s	-1	3	0	0	1	1	22			
	Z	-2	1	1	0	0	1	11			
	Р	2	-5	0	0	0	$\frac{1}{2}$	15			
		_		Ū	Ű	0	2				
				Γ	1		1		1	1	
	b.v	<u>X</u>	У	Z	r	S	t	value	row ops		
	У	$-\frac{1}{2}$	1	0	$\frac{1}{2}$	0	$\frac{1}{2}$	4	$R_1 \div 2$		1M1A1
	S	$\frac{1}{2}$	0	0	$-\frac{3}{2}$	1	$-\frac{1}{2}$	10	$R_2 - 3R_1$		2M1A1
	Z	$-\frac{3}{2}$	0	1	$-\frac{1}{2}$	0	$\frac{1}{2}$	7	$R_{3} - R_{1}$		(4)
	Р	$-\frac{1}{2}$	0	0	$\frac{5}{2}$	0	3	35	$R_4 + 5R_1$		
				1				1	I	1	
	b.v	Х	У	Z	r	S	t	value	row ops	-	
	У	0	1	0	-1	1	0	14	$R_1 + \frac{1}{2}R_2$		
	X	1	0	0	-3	2	-1	20	$R_2 \div \frac{1}{2}$		
	Z	0	0	1	-5	3	-1	37	$R_3 + \frac{3}{2}R_2$		3M1A1ft
	Р	0	0	0	1	1	$\frac{5}{2}$	45	$R_4 + \frac{1}{2}R_2$		4MIAI (4)
	D - 15	$\cdot \mathbf{v} = 2$))· v -	- 1/1• -	- <u>-</u> 27.	r - c	— t — (า			
(C)	1 -43	, x – 2	20, y -	- 14, 2	,	1 – 5	- t - v	J.			M1 A1 (2)
	a1B1	Iden	tifies	z, refe	rs to b	oasic v	variabl	e.			Total 11
	b1M1	Corr	ect pi	vot lo	cated,	attem	pt to c	livide rov	w. If choosi	ng negative	
	b1A1).) pivo	t row	correc	t incl	uding	change o	fbv		
	b2M1	(ft) (Correc	ct row	opera	tions	used a	t least on	ice, column	<i>x</i> , <i>r</i> , <i>t</i> or	
	value	correc	et.		•						
	b2A1	CAC) inclu	ıding	row of	perati	ons				
	b3M1	Thei	r corr	ect pr	vot loc	cated,	attem	pt to divi	de row. If cl	noosing	
	hegati	ve piv	t row	JMU.	t in al	ıdina	ahana	o of h u			
	b4M1	(ft) (l IOW	t row	opera	tions	used a	t least on	ce column	r s t o r	
	value	correc	zoniec zt.		opera	uons	useu a	it least on		7, 5, 7 01	
	b4A1	CAC)								
	c1M1	Thei	r corr	ect va	lues st	ated f	for at l	east P, x,	y, z from th	eir 'optimal'	
	iterati	on. No	o nega	tives.	Two	M ma	rks in	part (b) r	nust have be	een awarded	
	c1A1	CAC) for a	ull 7 va	alues.						

Question Number	Scheme	Marks						
6 (a)	Since maximising subtract all elements from some $n \ge 257$, say 260.							
	$\begin{bmatrix} 9 & 17 & 3 \\ 16 & 13 & 5 \\ 11 & 8 & 14 \end{bmatrix} \qquad \begin{pmatrix} n = 257 \begin{bmatrix} 6 & 14 & 0 \\ 13 & 10 & 2 \\ 8 & 5 & 11 \end{bmatrix}, n = 258 \begin{bmatrix} 7 & 15 & 1 \\ 14 & 11 & 3 \\ 9 & 6 & 12 \end{bmatrix} \end{pmatrix}$	1B1 (1)						
(D)	$x_{ij} = \begin{cases} 1 & \text{if worker } i \text{ does task } j \\ 0 & \text{otherwise} \end{cases}$	1B1						
	Where x_{ij} indicates worker <i>i</i> being assigned to task j $i \in \{H, K, J\}$ and $j \in \{1, 2, 3\}$	2B1 (2)						
	E.g. Minimise $P = 9x_{H1} + 17x_{H2} + 3x_{H3} + 16x_{J1} + 13x_{J2} + 5x_{J3} + 11x_{K1} + 8x_{K2} + 14x_{K3}$ $(P = 6x_{H1} + 14x_{H2} + 13x_{J1} + 10x_{J2} + 2x_{J3} + 8x_{K1} + 5x_{K2} + 11x_{K3})$ $(P = 7x_{H1} + 15x_{H2} + x_{H3} + 14x_{J1} + 11x_{J2} + 3x_{J3} + 9x_{K1} + 6x_{K2} + 12x_{K3})$ OR maximise							
	$251x_{H1} + 243x_{H2} + 257x_{H3} + 244x_{J1} + 247x_{J2} + 255x_{J3} + 249x_{K1} + 252x_{K2} + 246x_{K3}$	(2)						
	Subject to: $x_{H1} + x_{H2} + x_{H3} = 1$ or $\sum x_{Hj} = 1$ $x_{J1} + x_{J2} + x_{J3} = 1$ or $\sum x_{Jj} = 1$ $x_{K1} + x_{K2} + x_{K3} = 1$ or $\sum x_{Kj} = 1$ $x_{H1} + x_{J1} + x_{K1} = 1$ or $\sum x_{i1} = 1$ $x_{H2} + x_{J2} + x_{K2} = 1$ or $\sum x_{i2} = 1$ $x_{H3} + x_{J3} + x_{K3} = 1$ or $\sum x_{i3} = 1$	M1 1A1 2A1 (3)						
	a1B1CAO (o.e.)b1B1possible values of x_{ij} definedb2B1Defining x_{ij} including the set of values for i and j b3B1Objective functionb4B1Minimise/Maximise but consistent with objective functionb1M1Three equations, unit coefficients, =1b1A1Any three equations CAO (condone inconsistent notation)	Total 8						

Question Number	Scheme	Marks
	b2A1 All six equations CAO (consistent notation required)	

Question Number	Scheme								
7									
		<u>a</u>	<u></u>	A		X 7 1			
		Stage	State	Action	Destination	Value			
		ena	4	Sell	-	1*			
			$\frac{3}{2}$	Sell	_	<u>/</u> *			
			1	Sell	-	6*			
		4	3	K	4	1+2-3=0			
		•		R	1	$6 + 11 - 9 = 8^*$			
			2	Κ	3	2 + 5 - 2 = 5		1771 4 1 4 1	
				R	1	6 + 11- 8 = 9*		IMIAIAI	
			1	Κ	2	4 + 8 - 1 = 11*			
				R	1	6 + 11 - 7 = 10		2M1 A1	
		3	2	Κ	3	8 + 5 - 2 = 11			
				R	1	11 + 11 - 8 = 14*		3M1A1ft	
			1	Κ	2	$9 + 8 - 1 = 16^*$		A1	
				R	1	11 + 11 - 7 = 15			
		2	1	K	2	14 + 8 - 1 = 21*		4M1 A1ft	
				R	1	16 + 11 - 7 = 20			
		1	new	Κ	1	$21 + 11 = 32^*$		A1	
	 The actions Nigel should take are: Keep, Keep, Replace, Keep in years 1, 2, 3 and 4 respectively His income will be £32 000. 1M1 At least 3 columns in Stage 4 completed, something in each cell. 								
	correct 2A1 Two the first occu All future M	rows ir urrence A mark	n Stage s s must	4 CAO. I bring al	Penalise * erro	ors only twice in the q alts from previous st	uestion on tage into		
	All future M marks must bring all optimal results from previous stage into current stage at least once (or three out of four previous results correct). 2M1 All four rows in stage 4 completed. Bod if something in each cell. 3A1 CAO. Stage 4 correct. (Penalise * errors only twice in the question). 3M1 Stage 3 completed. Bod if something in each cell. 4A1ft Any state correct (Penalise * errors only twice in the question). 5A1 CAO Both states correct. (Penalise * errors only twice in the question). 5A1 CAO Both states correct. (Penalise * errors only twice in the question). 4M1 Stage 2 and 1 completed. Bod if something in each cell. 6A1ft CAO Stage 2 correct. (Penalise * errors only twice in the question). 7A1 CAO Stage 1 correct. 1B1 Actions correct. Must have earned all previous M marks 2B1ft Income correct for their table. Must have earned all previous M marks. Penalise extra rows for stage 4 with the 3rd A mark, stage 3 with the 5th A mark and stage 2 with the 6 th A mark								

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u>

Order Code UA035688 Summer 2013

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Llywodraeth Cynulliad Cymru Welsh Assembly Government

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Decision Mathematics 2R (6690/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014 Publications Code UA038495 All the material in this publication is copyright © Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- •All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol √ will be used for correct ft
 cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the guestion affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question Number			Sc	hem	e				Mark	S
1. (a)		A B C D Dema	P 11 	Q 2 4 4 10	R S 8 3 8 11 8	5 S1 	upply 13 4 12 11		B1	(1)
(b)	Shade	ow costs	Δ	28 P	32 Q	35 R	41 S	Supply 13	M1 A1	
		- 3 -6 -7	B C D	6 8 4	x x 5	-2 -6 X X	-7 -3 X	$\begin{array}{c} 13 \\ 4 \\ 12 \\ 11 \end{array}$	M1 A1	(4)
			Demand P Q	11	10 R	11 S	8 Sup	pply		
(c)		A B C D	$\begin{array}{c c} 11 & 2-\theta \\ \hline 4 \\ \hline 4 + \theta \\ \hline \end{array}$	8-3-	- θ + θ	θ $8-\theta$	1 1 1 0 1	13 4 12 11	M1 A1	
	L	Demand Ex	1110Enteringiting square	g squ re is A	1 are A AQ, ($\frac{8}{0} = 2$	 2).		A1ft	
		A B	P 11	Q	R S	5 S1 2	upply 13 4		A1	(4)
		C D Dema	nd 11	6 10	6 5 (11 8	5	12 11 70	_		
(d)	Current $cost = \pounds115$	52							B1 10 mar	(1) ·ks
a1B1: CA	Notes for Question 1 a1B1: CAO									
b1M1: Fin b1A1: Sha b2M1: Fin b2A1: Im c1M1: A v c1A1: CA c2A1ft: Ca c3A1: CS d1B1: CA	iding 8 shadow costs adow costs CAO. Inding the 5 missing i provement indices C valid route, their mos O correct route. Orrectly stating their O	Mproven AO [Sha tt negativ entering	nent indic dow costs e II chose and exitir	es. s: A(en, or ng ce	28), nly c lls.	B(25 ne e	5), C(2 mpty	22), D(21), P(0), Q(4 square used, θ's bala), R(7), S(1 nce.	13)].

Question Number	Scheme	Marks						
2. (a)	In the practical problem each vertex must be visited at least once. In the classical problem each vertex must be visited just once.	B2, 1, 0	(2)					
(b)	$\begin{array}{ccccccc} A & D & E & F & B & C & A \\ 15 + 17 + 14 + 26 + 50 + 48 & = 170 \end{array}$	M1 A1 A1	(3)					
(c)	B 26 F 14 E 17 D 20 C							
	RMST weight = $26 + 14 + 17 + 20 = 77$ (km) Lower bound = $77 + 15 + 30 = 122$ (km)	M1 A1 A1	(3)					
(d)	$122 \le \text{length} \le 170$	B2,1,0 10 marks	(2)					
	Notes for Ouestion 2							
(d) $122 \le \text{length} \le 170$ $B2,1,0$ 10 marks Notes for Question 2a1B1: Understands the difference is connected to the number of times each vertex may be visited.a2DB1: Correctly identifies which is classical and which is practical and correctly states the difference.b1M1: Nearest neighbour $A - D - E - F - B - C$ - or accept 145623 across top of table (condone lack of return to start).b1A1: Route correctly stated, must return to A, accept link back to A.b2A1: Length correctly stated. Do not ISW if candidates then go on to double the route length.c1M1: Finding RST (maybe implicit) and using the correct two least lengths. Their RST must have only four arcs of which none are incident to A.c1A1: RMST correct or list of arcs or 77 or $26 + 14 + 17 + 20$ seen.c2A1: CAO 122dIB1ft: Their correct numbers correctly used (their upper bound must be a cycle and their lower bound must have scored M1 in (c)), accept any inequalities or any indication of interval from their 122 to their 170								
u2b2. CAO including correct inequalities (but condone $122 < \text{length} \le 1/0$).								

Question Number	Scheme	Marks							
3. (a)	Column 3 dominates column 1, so delete column 1	B1							
	B2 B3 A1 2 -3 A2 1 -1 A3 -1 1								
	Let B play 2 with probability p and 3 with probability $1-p$	B1							
	If A plays 1 B's expected winnings are $-\{2p-3(1-p)\}=3-5p$ If A plays 2 B's expected winnings are $-\{p-(1-p)\}=1-2p$	M1 A1							
	If A plays 3 B's expected winnings are $-\{-p + (1-p)\} = 2p - 1$								
	$4 \uparrow^{V(B)} \uparrow^{V(B)} 4$								
	$ \begin{array}{c} 2 \\ 0 \\ -2 \\ \end{array} $ $ \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ -2 \\ -2 \\ -2 \\ -2 \\$	M1 A1							
	$\begin{array}{c c} -4 \\ p = 0 \end{array} \qquad \begin{array}{c} -4 \\ p = 1 \end{array}$								
	2p - 1 = 1 - 2p	DM1							
	$p = \frac{1}{2}$	A1							
	B should play column 2 and column 3 each with probability $\frac{1}{2}$ and never	A1	(9)						
	play column 1.	D 1	(1)						
(b)	V(B) = 0	BI 10	(1)						
	Notes for Ouestion 3								
a1B1: CAO Col 3 dominates Col 1 a2B1: Defines p – allow those who define B play 2 with prob. p but no incorrect statements. a1M1: Setting up three probability equations, implicit definition of p.									

a1A1: CAO (condone incorrect simplification).

a2M1: Three lines drawn, accept p > 1 or p < 0 here. Must be functions of p.

a2A1: CAO $0 \le p \le 1$, scale correct and clear (or 1 line = 1), condone lack of labels. Rulers used. a3DM1: Must have drawn 3 lines. Finding their correct optimal point, must have three lines and set up an equation to find $0 \le p \le 1$. Dependent on previous M mark. Must have three intersection points. If solving each pair of SE's must clearly select the correct one or M0, but allow recovery if their choice is clear.

a3A1: CAO – dependent on all, but a2B1, being awarded in this part.

a4A1: CAO

bDB1: CAO - dependent on all previous M marks in (a).

Question Number		Sc	cheme			Marks		
4. (a)								
	b.v x	y z	r s	t value	θ values			
	<i>r</i> 4	$3 \frac{5}{2}$	1 0	0 50	16.67			
	<u>s</u> 1	2 1	0 1 0	0 30	15			
	<i>t</i> 0	5 1	0 0	1 80	16			
	P –25	-40 -35	0 0	0 0				
	b.v. x	y z r	$\frac{s}{3}$ 0	value	Row ops	M1 A1		
	$r \frac{3}{2}$		$-\frac{3}{2}$ 0	3	KI = 5K2	B 1		
	$y = \frac{1}{2}$	$1 \frac{1}{2} 0$	$\frac{1}{2}$ 0	15	R2÷2	M1 A1		
	$t = \frac{5}{2}$	$0 = \frac{3}{2} = 0$	$-\frac{5}{2}$ 1	5	R3 – 5R2			
	P -5	0 -15 0	20 0	600	R4 + 40R2			
		1 1						
	b.v. <u>x</u> <u>y</u>	z r	$\frac{s}{2}$	value	Row ops			
	$z \frac{3}{2} 0$		$-\frac{3}{2}$ 0	5	Ristet			
	$y -\frac{3}{4} 1$	$0 -\frac{1}{2}$	$\frac{5}{4}$ 0	12.5	$R2 - \frac{1}{2}R1$	B1		
	$t \frac{5}{4} 0$	$0 \frac{3}{2}$	$-\frac{19}{4}$ 1	12.5	$R3 + \frac{3}{2}R1$	B1 M1 A1	(0)	
	P 32.5 0	0 15 -	-2.5 0	675	R4 + 15R1		(9)	
(b)	P + 32.5x + 15r - 2.5x	s = 675				B1	(1)	
(c)	P = 675 - 32.5x - 15r	+2.5s, so can	n increas	e profit b	y increasing <i>s</i> , hen	e B2,1,0	(2)	
	not optimal.					12 marks		
		Notes	for Qu	estion 4				
a1M1: Co	rrect pivot located, atte	mpt to divide	row. If	choosing	negative pivot no r	narks.		
a1A1: Piv	ot row correct includin	g change of b	.v.	C 11	2			
alBI: Ro	w operations CAO – al	low if given if	n terms	of old row	v 2.	4		
a2M1: (II) $a2\Delta1$ · C Δ	O on numbers (ignore	s used at least	once, cons and b	x	z, s or value correc	ι.		
a2A1. CAC on numbers (ignore row operations and 0.v.). a2B1: Correct pivot located and by changed. If choosing negative pivot 2B0 3M0								
a3B1: Ro	w operations CAO.	err enungeur		ing nogu		•		
a3M1: (ft)	Correct row operation	s used at least	once, c	olumn <i>x</i> , <i>i</i>	r, s or value correc	t.		
a3A1: CA	O on numbers (ignore	row operation	is and b.	v.).				
b1B1: CA	0	_						
c1B1ft: E	xplanation. Must have	gained at leas	st 2 M n	harks in (a	a) must refer to incl	reasing x, r and s,	,	
(condone r	no ref to $y = z = t = 0$),	must have corr	rect sigr	is in equa	tion in (b). Do not	accept 'negatives	, in	
profit row?	o.e. alone.							
c2DB1: C	AO – dependent on cor	rect equation i	in (b). S	pecificall	y identifies s as the	e next variable that	it	
could be in	creased.							

Notes for Question 5

a1M1: Four arcs added, SS_1 , SS_2 , T_1T , T_2T and 2 numbers on each.

a1A1: CAO for arcs

a2A1: CAO for flow values and capacities

b1M1: Two numbers on each arc and at least three arcs or six numbers correct.

b1A1: CAO do give bod since they might well cross these numbers out.

c1M1: One valid flow augmenting route found and a value stated.

c1A1: Flow increased by at least 3.

c2A1: A second correct flow route of value at least 5 and value correct.

c3A1: CSO Flow increased by 21 and no more.

d1M1: Consistent flow pattern \ge 84 (check each node). One number only per arc. No unnumbered arcs. d1A1: CAO, showing flow of 102, must follow from their routes.

e1DB1: Must have attempted (d) - at least one number on all but one arc, and made an attempt at a cut, either drawn or stated.

e2DB1: CSO - (d) fully correct (showing a correct flow of 102) and a correct cut. Must refer to max flow-min cut theorem – all four words.

Question Number	Scheme							
6.	Let x_{ij} be 0 or 1							
	$\int 1$ if worker (<i>i</i>) does task (<i>j</i>)	B1						
	0 otherwise							
	where $i \in \{A, B, C, D\}$ and $j \in \{1, 2, 3, 4\}$							
	minimise $C = 29x_{A1} + 15x_{A2} + 32x_{A3} + 30x_{A4}$							
	$+34x_{B1}+26x_{B2}+40x_{B3}+32x_{B4}$	M1 A1						
	$+28x_{C1}+27x_{C2}+35x_{C3}+100'x_{C4}$							
	$+ 100' x_{D1} + 21 x_{D2} + 33 x_{D3} + 31 x_{D4}$							
	Subject to $\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \sum_{n=$							
	$x_{A1} + x_{A2} + x_{A3} + x_{A4} = 1$ or $\sum x_{Aj} = 1$							
	$x_{B1} + x_{B2} + x_{B3} + x_{B4} = 1$ or $\sum x_{Bj} = 1$	M1						
	$x_{C1} + x_{C2} + x_{C3} + x_{C4} = 1$ or $\sum x_{Cj} = 1$							
	$x_{D1} + x_{D2} + x_{D3} + x_{D4} = 1$ or $\sum x_{Dj} = 1$							
	$x_{A1} + x_{B1} + x_{C1} + x_{D1} = 1$ or $\sum x_{i1} = 1$	MI						
	$x_{A2} + x_{B2} + x_{C2} + x_{D2} = 1$ or $\sum x_{i2} = 1$							
	$x_{A3} + x_{B3} + x_{C3} + x_{D3} = 1$ or $\sum x_{i3} = 1$	A1						
	$x_{A4} + x_{B4} + x_{C4} + x_{D4} = 1$ or $\sum x_{i4} = 1$	7 marks						
	Notes for Question 6							
1B1: Defin	ning variables fully both 'bits' values and subscripts. Penalise poor variable choice, (AI	Petc.) here.						
1M1: Atte	mpt at a 16 term expression, coefficients 'correct', 2 'large' values included, condone 2 \rightarrow minimise. Penalise reversed subscripts once only per question	2 slips.						
2M1: Four	equations, each in four variables, unit coefficients, all 16 variables included, = 1, accer	pt $\leq 1, \geq 1$						
here for th	is M only	_						
2A1: Any	4 CAO.							
3A1: CAC	b equations, each in four variables, unit coefficients, all 16 variables included = 1.							

Question Number		Marks				
7. (a)	E.g.					
	Stage	State	Action	Dest	Value	
	Bicycle	4	4	0	350	1M1 1A1 (2)
		3	3	0	260	
		2	2	0	1/0	
		1	1	0	80	
	Della	(0	0	0	0) + 250 - 250	
	bouse	4	1	4	0 + 350 = 350	
	nouse		2	2	95 + 200 = 355	2M1 2A1 3A1
		<u> </u>	3	1	245 + 80 - 325	(3)
			<u> </u>	0	$335 \pm 0 = 325$	States 4 + 3
		3	0	3	0 + 260 = 260	
			1	2	$95 + 170 = 265^{*}$	
			2	1	165 + 80 = 245	
			3	0	245 + 0 = 245	
		2	0	2	0 + 170 = 170	3M1 4A1 5A1
			1	1	95 + 80 = 175*	(3)
			2	0	165 + 0 = 165	States 2 + 1
		1	0	1	0 + 80 = 80	States $2 + 1$
			1	0	$95 + 0 = 95^*$	
		(0	0	0	0 + 0 = 0)	
	Train	4	0	4	0 + 355 = 355	
	set		1	3	100 + 265 = 365*	4M1 6A1ft
			2	2	180 + 175 = 355	7A1
			3	1	260 + 95 = 355	(3)
			4	0	340 + 0 = 340	
	Toy		Bio	cycle	Dolls House Train Set	1D1 (1)
	Number of	f workei	rs 2		1 1	IDI (I)
(b)	Total num	ber of to	oys is 365			1B1 (1)
						13 marks

Notes for Question 7

- <u>ALL M marks Must bring earlier optimal results into calculations. Ignore extra rows.</u> Must have right 'ingredients' (– number of workers) at least once per stage.
- <u>Penalise inconsistency/errors with the state/destination columns with the first two A marks</u> <u>earned only.</u>
- <u>Penalise empty/errors in stage column with first A mark earned only.</u>

a1M1: First stage (Bicycle) completed – bod something in each cell. Must have columns for stage, state, value and one of either action or destination.

a1A1: CAO condone missing * here. Condone missing zero row.

a2M1: Second stage (Dolls house) completed for at least states 4 and 3. Bod something in each cell.

a2A1: Any one of these states correct. No missing rows. (Penalise * errors only once in the question). a3A1: CAO both states 4 and 3 correct. No missing rows. (Penalise * errors only once in the question).

a3M1: Second stage (Dolls house) fully completed, condone missing zero row. Bod something in each cell.

a4A1: States 2 and 1 correct. No missing rows. (Penalise * errors only once in the question).

a5A1: CAO for stage 2. No missing rows. (Penalise * errors only once in the question).

a4M1: Third stage (Train set) completed. Bod something in each cell.

a6A1ft: Any three rows of third stage correct. Ft on * values only. No missing rows. (Penalise * errors only once in the question).

a7A1: CAO for the third stage. No missing rows. (Penalise * errors only once in the question).

a1B1: CAO. Must have attempted algorithm, getting all previous M marks.

b1B1: CAO. Must have attempted algorithm, getting all M marks in (a).

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Decision Mathematics 2 (6690/01)

General Marking Guidance

- •All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- •Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- •Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- •There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- •All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014 Publications Code UA038485 All the material in this publication is copyright © Pearson Education Ltd 2014

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt[]{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

PMT		
	Question Number	
	1.	Since maximising, subtract all and insert large numbers in co e.g. $\begin{bmatrix} 2\\1\\2\\1 \end{bmatrix}$

Number	Scheme	Marks
1.	Since maximising, subtract all elements from some $n \ge 30$ and insert large numbers in cells A4 and B2 e.g. $\begin{bmatrix} 21 & 24 & 17 & 100\\ 16 & 100 & 10 & 17\\ 22 & 23 & 15 & 22\\ 16 & 16 & 14 & 16 \end{bmatrix}$	M1 M1
	Reduce rows $\begin{bmatrix} 4 & 7 & 0 & 83 \\ 6 & 90 & 0 & 7 \\ 7 & 8 & 0 & 7 \\ 2 & 2 & 0 & 2 \end{bmatrix}$ then columns $\begin{bmatrix} 2 & 5 & 0 & 81 \\ 4 & 88 & 0 & 5 \\ 5 & 6 & 0 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	M1 A1
	$\begin{bmatrix} 0 & 3 & 0 & 79 \\ 2 & 86 & 0 & 3 \\ 3 & 4 & 0 & 3 \\ 0 & 0 & 2 & 0 \end{bmatrix}$	M1 A1ft
	either $\begin{bmatrix} 0^* & 0 & 0 & 76 \\ 2 & 83 & 0 & 0 \\ 3 & 1 & 0 & 0 \\ 3 & 0^* & 5 & 0 \end{bmatrix} $ or $\begin{bmatrix} 0^* & 3 & 2 & 79 \\ 0 & 84 & 0 & 1 \\ 1 & 2 & 0 & 1 \\ 0 & 0^* & 4 & 0 \end{bmatrix} $ then $\begin{bmatrix} 0^* & 2 & 2 & 78 \\ 0 & 83 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0^* & 5 & 0 \end{bmatrix}$	M1 A1ft A1
	Two optimal allocations: $ \begin{array}{c cccc} \hline A & 1 & 1 \\ \hline B & 3 & 4 \\ \hline C & 4 & 3 \\ \hline D & 2 & 2 \end{array} $	A1
		10 marks

Notes for Question 1									
1M1: Subtracting from some $n \ge 30$, condone up to 2 errors.									
2M1: Dealing with the A4 and B2 entries.									
3M1: Reducing rows and then columns.									
1A1: CAO									
4M1: Double covered + e; one uncovered – e; and one single covered unchanged. 2 lines needed to 3									
lines needed.									
2A111. Tonow through on their previous table - no enois 5M1: One double covered $\pm e$: one uncovered $_e$: and one single covered unchanged 3 lines needed to									
4 lines needed (so getting to optimal table)									
3A1ft: Follow through on their previous table - no errors									
4A1: CSO on final table.									
5A1: CAO – either one – this mark is dependent on all M marks being awarded.									
Special Cases: Minimising (can score a max. of 5)									
1M0 2M1 3M1 1A1 4M0 2A0 5M1 3A1ft 4A0 5A0									
E.g.									
19 10 25 30 5 0 7 14 5 0 5 14 24 30 30 23 rows 1 7 7 0 columns 1 7 5 0									
18 17 25 18 1 0 8 1 1 0 6 1									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
Then either									
2 0* 4 14 or 2 0* 4 13									
0 7 4 0* 1 8 5 0*									
0* 0 5 1 0* 0 5 0									
0 1 0* 1 0 1 0* 0									
Not dealing with the – (can score a max. of 6)									
1M1 2M0 3M1 1A0 4M1 2A1ft 5M1 3A1ft 4A0 5A0									

Question Number	Scheme	Marks							
2. (a)	A E F B C D A and A E F D B C A 35+75+88+80+108+85 = 471 35+75+88+100+80+130 = 508	M1 A1 A1 A1 (4)							
(b)	D A E B C 85 35 83 80								
	RMST weight = $85 + 35 + 83 + 80 = 283$ (seconds) Lower bound = $283 + 75 + 88 = 446$ (seconds)	M1 A1 A1 (3)							
(c)	(c) $446 \le \text{time} \le 471 \text{ [accept } 446 < \text{time} \le 471\text{]}$								
		10 marks							
	Notes for Question 2								
a1M1: Nearest neighbour either $A - E - F - B - C - D$ or $A - E - F - D - B - C$, condone lack									
of return to start. Accept 145623 or 156423 across top of table (numbers must be from NN not									
Prim).									
a1A1: One	route correctly stated, must return to A, accept link back to A.								
a2A1: One	route length correctly stated. Do not ISW if candidates then go on to doub	le the route							
length in (a)									
a3A1: Seco	nd route and its length correctly stated. Do not ISW if candidates then go	on to double							
h1M1. Find	Igui III (a). ling RST (maybe implicit) and using the correct two least lengths. Their R	ST must have							
only four arcs none of which are incident to E									
b1A1: RM	b1A1. RMST correct or list of arcs or 283 or $85 + 35 + 83 + 80$ seen								
b2A1: CAO 446									
c1B1ft: their 471 (must be a cycle) as an upper bound – allow recovery in this part.									
c2B1ft: any indication of interval from their 446 (must come from six arcs) to their 471.									
c3B1: 446 \leq time \leq 471 or 446 $<$ time \leq 471									

Question Number	Scheme	Marks							
3. (a)									
	b.v x y z r s t value θ values								
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
	s 3 2 1 0 1 0 1650 825								
	$t \ \frac{1}{2} \ -1 \ 2 \ 0 \ 0 \ 1 \ 800 \ n/a$								
	P -40 -50 -35 0 0 0 0								
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1							
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 M1 A1							
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MI AI	(5)						
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
	b.v. x y z r S t value Row ops								
	$r \mid \frac{21}{10} \mid 0 \mid 0 \mid 1 \mid \frac{11}{10} \mid \frac{4}{5} \mid 1325 \mid R1 + 2R3$								
	y $\frac{11}{10}$ 1 0 0 $\frac{2}{5}$ $-\frac{1}{5}$ 500 R2 - $\frac{1}{2}$ R3	M1 A1ft							
	z $\frac{4}{5}$ 0 1 0 $\frac{1}{5}$ $\frac{2}{5}$ 650 R3 ÷ $\frac{5}{2}$	M1 A1							
	P 43 0 0 0 27 4 47750 R4 + 10R3		(5)						
(b)	P = 47750 $x = 0$ $y = 500$ $z = 650$ $r = 1325$ $s = t = 0$	B1ft B1							
(0)			(2)						
		12 marks							
a1M1· Co	Notes for Question 3 react pivot located attempt to divide row. If choosing negative pivot no marks	,							
alAl: CA	O pivot row correct including change of b.v.								
a1B1: All	row operations CAO – allow if given in terms of old row 2.								
a2M1: (ft)	The correct row operations used correctly at least once from their pivot, column	mn x, z, s or							
value corr $a2A1 \cdot CA$	Ω on numbers (ignore row operations and by)								
u2111. CA	to on numbers (ignore row operations and 0.v.)								
a3M1: The	eir correct pivot located, attempt to divide row. If choosing negative pivot M0	M0.							
a3A1ft: Pi	vot row correct on follow through including change of b.v .								
$a2B1$: All $a4M1 \cdot (ft)$	The correct row operations used correctly at least once from their pivot, colu	mn x s t or							
value 'corr	ect'.	iiii <i>x</i> , <i>s</i> , <i>i</i> oi							
a4A1: CA	O on numbers (ignore row operations and b.v.)								
b1B1ft· Th	which be a stated for at least $P_{1} \ge \sqrt{2}$ from their 'optimal' iteration. No	o negatives							
Two M marks in (a) must have been awarded.									
Allow implicit stating of P e.g. $P+43x+27s+4t = 47750$ with x, s, $t = 0$.									
b2B1: CA	O For all 7 variables correct and given explicitly.								

Question Number	Scheme	Marks
4. (a)	Row mins $\{-3, -3\}$ Column max $\{2, 2, 1, 1\}$ Row maximin $(-3) \neq$ column minmax (1) so not stable	M1 A1
(b)	Column 4 dominates column 2 so delete column 2 or if B plays 2 A's expected winnings are $-p + 2(1-p) (= 2-3p)$	B1
	B1 B3 B4 A1 2 1 -3 A2 -3 -2 1	
	Let A play 1 with probability p and 2 with probability $1-p$	B1
	If B plays 1 A's expected winnings are $2p - 3(1-p) = 5p - 3$ If B plays 3 A's expected winnings are $p - 2(1-p) = 3p - 2$ If B plays 4 A's expected winnings are $-3p + (1-p) = 1 - 4p$	M1 A1
	$ \begin{array}{c} $	M1 A1
	5p - 3 = 1 - 4p	M1
	$p = \frac{4}{9}$	A1
	A should play row 1 with probability $\frac{4}{9}$ and row 2 with probability $\frac{5}{9}$	A1
		(9) 11 marks

Notes for Question 4 a1M1: Finding row minimums and column maximums - condone one error. a1A1: CAO states $-3 \neq 1$ (or row (maximin) \neq col (minimax)) and draws the conclusion. b1B1: CAO Col 4 dominates Col 2 (maybe implied by later working) or correctly stating the expression for A's expected winnings if B plays 2 (2 - 3p). b2B1: Defines p. Allow those who only define that A plays 1 with prob. p - no incorrect statements be generous. b1M1: Setting up three probability equations, implicit definition of p. b1A1: CAO (condone incorrect simplification). b2M1: Either attempt at three lines (correct slant direction and relative intersection with 'axes') or four lines if no earlier domination, accept p > 1 or p < 0 here. Must be functions of p. b2A1: CAO $0 \le p \le 1$, scaling correct and clear (or 1 line = 1), condone lack of labels. Rulers used. b3DM1: Finding their correct optimal point, must have three (or four) lines and set up an equation to find $0 \le p \le 1$. Dependent on previous M mark. Must have at least three intersection points. Solving all three simultaneous equations and stating incorrect p is M0. b3A1: CAO (must have scored all marks except b2B1 (define p mark) in this part). b4A1: CAO SC1: If column 4 is deleted in (b) candidates can earn a maximum of B0 B1 M1 A0 M1 A0 M1 A0 A1 (max. of 5 out of 9 in part b) The final A mark is for 'A should play row 1 with prob. 2/3 and row 2 with prob. 1/3. SC2: If column 1 or 3 is deleted in (b), candidates can earn a maximum of B0 B1 M1 A0 M1 A0 M0 A0 A0 (max. of 3 out of 9 in part b)

Notes for Question 5

a1B1: CAO

b1M1: Two numbers on each arc **and** at least two arcs **or** four numbers correct (so correct numbers with the correct arrows).

b1A1: CAO do give bod since they might well cross these number out.

c1M1: One valid flow augmenting route found and a value stated.

c1A1: Flow increased by at least 2.

c2A1: A second correct flow route and value correct.

c3A1: CSO Flow increased by 8 and no more.

d1M1: Consistent flow pattern ≥ 64 (check each node). One number only per arc. No unnumbered arcs. d1A1: CAO, showing flow of 70, must follow from their routes.

e1DB1: Must have attempted (d) - at least one number on all but one arc, and either drawn or stated a cut. Cut may be drawn on any diagram.

e2DB1: CSO - (d) fully correct (showing a correct flow of 70) and a correct cut. Must refer to max flow-min cut theorem – all four words.

Question Number	Scheme	Marks								
6.	Let x_{ij} be the number of washing machines transported from <i>i</i> to <i>j</i> where $i \in \{P,Q,R\}$ and $j \in \{A,B,C,D\}$	B1								
	The objective is to minimise C = $11x_{PA} + 22x_{PB} + 13x_{PC} + 17x_{PD}$ + $21x_{QA} + 8x_{QB} + 19x_{QC} + 14x_{QD}$ + $15x_{RA} + 10x_{RB} + 9x_{RC} + 12x_{RD}$									
	Subject to $x_{PA} + x_{PB} + x_{PC} + x_{PD} = 25$ or $\sum x_{Pj} = 25$ $x_{QA} + x_{QB} + x_{QC} + x_{QD} = 27$ or $\sum x_{Qj} = 27$ $x_{RA} + x_{RB} + x_{RC} + x_{RD} = 28$ or $\sum x_{Rj} = 28$ $x_{PA} + x_{QA} + x_{RA} = 18$ or $\sum x_{iA} = 18$ $x_{PB} + x_{QB} + x_{RB} = 16$ or $\sum x_{iB} = 16$ $x_{PC} + x_{QC} + x_{RC} = 20$ or $\sum x_{iC} = 20$ $x_{PD} + x_{QD} + x_{RD} = 26$ or $\sum x_{iD} = 26$	M1 A1 A1								
	$x_{ij} \ge 0$	AI 7 marks								
	Notes for Question 6									
1B1: Varia are inconst choice, (A	ables defined correctly – withhold this mark if definition of x_{ij} or the elements of istent with their later use in the objective function and constraints. Penalise poor P etc.) here.	of sets <i>i</i> and <i>j</i> r variable								

2B1: Minimise + an attempt at an objective with at least 5 correct terms.

3B1: Objective function correct (minimised not required for this mark).

1M1: At least 3 'correct' constraints listed with **unit** coefficients (accept = or any inequality for the M mark) – rhs values must be correct.

1A1: At least 3 correct constraints (accept consistent use of = or \leq on at least 3).

2A1: At least 6 correct constraints (accept consistent use of = or \leq on at least 6).

3A1: All 8 constraints correct (first seven constraints consistently either = or \leq but final constraint must be ≥ 0).

uestion) Number	Scheme								Mar	ks
7.	E.g.									
	Stage	State	Action	Dest Value						
	July	2	1	0	1000 + 20	00	=	3000*	1M1 1A	.1 (2)
	(3)	1	2	0	500 + 20	00	=	2500*		
		0	3	0	20	00	=	2000*		
	June	2	2	0	1000 + 20	00	+2000 =	5000*		
	(4)		3	1	1000 + 20	00	+ 2500 =	5500	211 2 4	1ft
			4	2	1000 + 20	00 + 1000	+3000 =	7000	3A1	111
		1	3	0	500 + 20	00	+2000 =	4500*	5711	(3)
			4	1	500 + 20	00 + 1000	+2500 =	6000		
		0	4	0	20	00 + 1000	+2000 =	5000*		
	May	2	0	0	1000		+5000 =	6000*		
	(2)		1	1	1000 + 20	00	+4500 =	7500		
		1	2	2	1000 + 20	00	+5000 =	8000		
		1	1	0	500 + 20 500 + 20	00	+5000 =	7000*	3M1 4A	1ft
			2	2	500 ± 20	00	+4300 = + 5000 =	7500	5A1	
		0	2	0	20	00	+5000 -	7000		(3)
		0	3	1	20	00	+3000 = + 4500 =	6500*		
			4	2	20	$\frac{00}{00+1000}$	+5000 =	8000		
	April	2	2	0	1000 + 20	00	+ 6500 =	9500*		
	(4)		3	1	1000 + 20	00	+ 7000 =	10000		
			4	2	1000 + 20	00 + 1000	+ 6000 =	10000		
		1	3	0	500 + 20	00	+ 6500 =	9000*	4M1 6A	.1
			4	1	500 + 20	00 + 1000	+7000 =	10500		(2)
		0	4	0	20	00 + 1000	+ 6500 =	9500*		
	March	0	3	0	20	00	+ 9500 =	11500*		
	(3)		4	1	20	00 + 1000	+ 9000 =	12000	53 61 7 4	1 (1)
									5M1 /A	AI (2)
	Month			March	April	May	June	July	1R1	
	Number	r made		3	4	3	3	3	IDI	
	Total co	ost: £11	500						2B1	(2)
									14 mar	ks

Notes for Question 7

<u>ALL M marks - Must bring earlier optimal results into calculations. Ignore extra rows. Must</u> have right 'ingredients' (– storage costs, overheads, additional space costs) at least once per stage.

Penalise lack of * only once per question.

1M1: First stage completed. 3 rows, something in each cell.

1A1: CAO condone missing * here. No extra rows.

2M1: Second stage completed with 3 states and at least 6 rows. Bod if something in each cell.

2A1ft: Any 2 states correct. Ft for their * values or the correct * values.

3A1: CAO All 3 states correct. No missing/extra rows.

3M1: 3rd stage completed with 3 states and at least 9 rows. Bod if something in each cell.

4A1ft: Any state correct. Ft on their * values or the correct * values.

5A1: CAO All 3 states correct. No missing/extra rows.

4M1: 4th stage completed with 3 states and at least 6 rows. Bod if something in each cell.

6A1: CAO All 3 states correct. No missing/extra rows.

5M1: 5th stage completed with at least 2 rows. Bod if something in each cell.

7A1: CAO Final, state correct. No missing/extra rows.

1B1: CAO Must have earned all previous M marks.

2B1: CAO Must have earned all previous M marks.

Stage	State	Action	Dest	Value				
July	2	1	0	$2000 = 2000^*$	1M1			
(3)	1	2	0	$2000 = 2000^*$	1A1			
	0	3	0	$2000 = 2000^*$				
June	2	2	0	2000 + 2000 = 4000*	2M1			
(4)		3	1	500 + 2000 + 2000 = 4500				
		4	2	1000 + 2000 + 1000 + 2000 = 6000				
	1	3	0	$2000 + 2000 = 4000^*$	2A1ft			
		4	1	500 + 2000 + 1000 + 2000 = 5500				
	0	4	0	$2000 + 1000 + 2000 = 5000^{*}$	3A1			
May	2	0	0	$5000 = 5000^{*}$	3M1			
(2)		1	1	500 + 2000 + 4000 = 6500				
		2	2	1000 + 2000 + 4000 = 7000				
	1	1	0	2000 + 5000 = 7000				
		2	1	500 + 2000 + 4000 = 6500*	4A1ft			
		3	2	1000 + 2000 + 4000 = 7000				
	0	2	0	2000 + 5000 = 7000				
		3	1	500 + 2000 + 4000 = 6500*	5A1			
		4	2	1000 + 2000 + 1000 + 4000 = 8000				
April	2	2	0	$2000 + 6500 = 8500^{\circ}$	4M1			
(4)		3	1	500 + 2000 + 6500 = 9000				
		4	2	1000 + 2000 + 1000 + 5000 = 9000				
	1	3	0	$2000 + 6500 = 8500^{\circ}$	6A1			
		4	1	500 + 2000 + 1000 + 6500 = 10000				
	0	4	0	2000 + 1000 + 6500 = 9500*				
March	0	3	0	2000 + 9500 = 11500*	5M1			
(3)		4	1	500 + 2000 + 1000 + 8500 = 12000	7A1			

Alt correct solution – adding the storage costs at start of each month

Month	March	April	May	June	July	
Number made	3	4	3	3	3	1B1

Total cost: £11500

2B1
PMT

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2015

Pearson Edexcel GCE in Decision Mathematics 2 (6690/01)

ALWAYS LEARNING

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015 Publications Code UA041216 All the material in this publication is copyright © Pearson Education Ltd 2015

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.

- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question Number		Scheme									ks
1.(a)	b.v. r x t P	x 0 1 0 0	$\begin{array}{c} y \\ -5 \\ \frac{1}{2} \\ -\frac{3}{2} \\ \frac{7}{2} \end{array}$	z 5 -2 6	r 1 0 0 0 0 0	$\begin{array}{c} s \\ -\frac{1}{2} \\ \frac{1}{4} \\ -\frac{1}{4} \\ \frac{3}{4} \end{array}$	t 0 0 1 0	Value 5 5 3 15	$\frac{\text{Row ops}}{R_1 - 2R_2}$ $R_2 \div 4$ $R_3 - R_2$ $R_4 + 3R_2$	M1 A1 M1 A1ft A1	(5)
(b)	$P + \frac{7}{2}y$ $r = 5,$	+z+ s=0,	$\frac{\frac{3}{4}s}{t=3}$	15 3						B1ft B1 7 marks	(2) s
					No	otes for	Questic	on 1			
a1M1: Co a1A1: Piv	rrect pivo ot row co	t locat rrect i i	ed (4 i ncludi	n colun ng cha r	111 x), a nge of	attempt t b.v.	to divid	e row			
a2M1: All	l values in	one o	of the n	on-pive	ot rows	s correct	or one	of the nor	n zero and one colum	ins (y, z, s (or

value) correct following through their choice of pivot from column x

a2A1ft: Row operations used correctly at least twice, i.e. **two** of the non zero and one columns (y, z, s or value) correct following through their choice of pivot from column x

a3A1: CAO – no follow through – all values and row operations correctly stated – allow if row operations given in terms of old row 2 – **ignore b.v. column for this mark**

b1B1ft: Follow their profit equation from (a) dependent on scoring **both** M marks in (a) b2B1: CAO (no follow through) for slack variables (r = 5, s = 0, t = 3)

Pivoting on the 1 in the *x*-column

b.v.	x	у	Z	r	S	t	V
r	0	-2	-7	1	0	-2	-1
S	0	6	-24	0	1	-4	-12
x	1	-1	4	0	0	1	8
Р	0	-1	19	0	0	3	24

Pivoting on the 2 in the *x*-column

b.v.	x	у	Z.	r	S	t	V
x	1	-2	0.5	0.5	0	0	7.5
S	0	10	-10	-2	1	0	-10
t	0	1	3.5	-0.5	0	1	0.5
Р	0	-4	8.5	1.5	0	0	22.5

Question Number	Scheme	Marks
2 (a)	The gains (or losses) made by one player are exactly balanced by the losses (or	B 1 (1)
2.(a)	gains) made by the other player.	B1 (1)
(b)	$\frac{5}{2}$	B1 (1)
(C)	Column maximum $\{2, 4, 2\}$ Column minimax = 2	A1
	$0 \neq 2$ so no stable solution	A1 (3)
(d)	Column 1 dominates column 2 so remove column 2	B1
	$\begin{pmatrix} 3 & 0 & -2 \\ -2 & -1 & 5 \end{pmatrix}$	B1ft B1 (3)
(e)	(Let $p = \text{probability that Greg plays new row 1)}$ If R plays 1: G's expected winnings = $3p - 2(1 - p)$ (= $5p - 2$) If R plays 2: G's expected winnings = $0p - 1(1 - p)$ (= $p - 1$) If R plays 3: G's expected winnings = $-2p + 5(1 - p)$ (= $-7p + 5$)	M1 A1 B2, 1ft, 0
	p - 1 = -7p + 5 8p = 6 $p = \frac{3}{4}$ G should play 1 with probability $\frac{3}{4}$, 2 never and play 3 with probability $\frac{1}{4}$ The value of the game to G is $-\frac{1}{4}$	DM1 A1 A1ft A1 (8) 16 marks

Question									
Number	Scheme	Marks							
Notes for Question 2									
a1B1: CAO (indication that either the losses of one (player) are balanced by the gains of the other (player) or that the total points scored by both (players) is zero)									
b1B1: CA	b1B1: CAO (5)								
c1M1: Clear attempt to find the Row maximin and Column minimax (either the Row minimums or Column maximums correct or at least four (of the six) values stated correctly) c1A1: Correct Row maximin and Column minimax (dependent on all row mins and column maxs correct) c2A1: CAO (so both previous marks must have been awarded) states $0 \neq 2$ (or row (maximin) \neq col (minimax) as long as 0 is clearly identified as the row maximin and 2 as the column minimax) and draws the correct conclusion									
d1B1: CA recovery 1 d2B1ft: Ei correct val then allow 'correct') d3B1: CA	d1B1: CAO (accept reduced matrix or 'column 1 dominates column 2' or column crossed out). Allow recovery later (seeing the correct 2×3 matrix implies all three marks in this part) d2B1ft: Either 3×2 matrix with correct values for G (so all signs changed correctly) or 2×3 matrix with correct values for G (condone incorrect signs). If incorrect column deleted (so B0 for first mark in this part) then allow this mark on the ft for their 3×2 matrix transposed 'correctly' for G (both values and signs 'correct') d3B1: CAO								
e1M1: Set e1A1: CA e1B1ft: At p < 0 here e2B1: CA acceptable e2DM1: F Dependen equations e2A1: CS0 e3A1ft: A Dependen e4A1: CA	e1M1: Setting up all three probability expressions (allow $p - 1$), implicit definition of 'p' e1A1: CAO (condone incorrect simplification) e1B1ft: Attempt at three lines (correct slant direction and relative intersection with 'axes'), accept $p > 1$ or p < 0 here but must go from 'axis' to 'axis' (give bod if close). Must be functions of $pe2B1: CAO 0 \le p \le 1, scaling correct and clear (expect to see 1 line = 1, although other scalings areacceptable eg 1 line = 2), condone lack of labels. Rulers usede2DM1: Finding their correct optimal point, must have three lines and set up an equation to find 0 \le p \le 1.Dependent on first B mark in this part. Must have three intersection points. Solving all three simultaneousequations and stating incorrect p is M0e2A1: CSO (must have scored all previous marks in (e))e3A1ft: All three options listed must ft from their p (0 \le p \le 1), check page 1 for G should never play 2.Dependent on both previous M marks in this part$								
SC1: If co	SC1: If column 1 is deleted in (d) candidates can earn a maximum in (e) of								
M1 A0 B1 3 with pro	M1 A0 B1 B0 M1 A0 A1 A1 (max. of 5) – the penultimate A mark is for G should play 1 never, play 2 and 3 with probability $\frac{1}{2}$, final A mark is for the value of the game being $-\frac{3}{2}$								
SC2 : If co	lumn 3 is deleted in (d) candidates can earn a maximum in (e) of								
M1 A0 B1	M1 A0 B1 B0 M0 A0 A0 A0 (max. of 2)								

Question Number	Scheme	Mark	.s						
3.(a)	Prim: AF, EF, BE, BC, CD, DG	M1 A1	(2)						
(b)	$2 \times 136 = 272 \text{ (km)}$	B1	(1)						
(c)	A F E B C D G A 21 20 19 27 24 25 30 = 166 (km)	B1 B1	(2)						
(d)	Starting at F route length is $153 + x$	B1							
	With $x > 21$, 153 + x is greater than 166 so the better upper bound is the one starting at A	DB1	(2)						
(e)	Length of RMST = 115 115 + 21 + $x = 159 \therefore x = 23$ (km)	B1 M1 A1	(3)						
(f)	$159 \le \text{optimal} \le 166 \text{ [accept } 159 < \text{optimal} \le 166 \text{]}$	B2,1,0 12 mark	(2) s						
	Notes for Question 3								
no workin A a1A1: CA	7 nodes / or numbers across the top of the matrix) selected correctly. Award M1 only for a correct tree with no working. Award M1 only for the first four arcs (oe) selected correctly if starting at a different node than A a1A1: CAO (order of arc selection clear)								
b1B1: CA	O (272)								
c1B1: CA c2B1: CA	O – must be either in terms of nodes or arcs (not weights) O (166)								
d1B1: Either $153 + x$ or states a value in the interval $174 < value < 180$ or considers one of the intervals $174 < value < 180$ or $175 \le value \le 179$ d2DB1: Correct argument that A gives the better upper bound. Must be considering either $x > 21$ or $x \ge 22$ with 153 (so expect to see as a minimum the mention of > 174 or ≥ 175) – must be clear that the upper bound starting at A is the better upper bound. This mark is dependent on the previous B mark in (d)									
e1B1: CAO (length of RMST) – the length (115 or $19 + 20 + 27 + 24 + 25$) must be either explicitly stated or seen in their working (not just implied by their working) e1M1: Adding the correct two least values (21 and <i>x</i>) to their RMST length (their RMST may be incorrect but must contain only 5 arcs) and equating to 159. Accept, for example, $136 + x = 159$ or $136 + 23 = 159$ or 115 + 21 + 23 = 159 or equivalent calculations using the length of their RMST e1A1: CAO (must be clear that ($x =$) 23 not just embedded in a calculation)									
f1B1: Any indication of an interval containing 159 (as a lower bound) and their stated better upper bound from (d) f2B1: CAO either 159 \leq optimal (oe) \leq 166 or 159 $<$ optimal (oe) \leq 166									

Question Number	Scheme	Marks
5.(a)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1 A1 (2)
(b)	$ \begin{array}{ c c c c c c c c } Shadow & 20 & 5 & -1 \\ \hline costs & & & & \\ \hline \hline & & P & Q & R \\ \hline 0 & A & X & X & 14 \\ \hline -13 & B & X & 23 & 22 \\ \hline -11 & C & X & 20 & 33 \\ \hline 11 & D & -9 & X & X \\ \hline \end{array} $	M1 A1
(~)	PQRA $24 - \theta$ $50 + \theta$ BCD θ $7 - \theta$ Entering cell DP, exiting cell DQ	M1 A1 (4)
(c)	Shadow costs2058 P QR0AXX-13BX23-11CX202DX9XOptimal since no negative improvement indices	M1 A1 A1 (3)
(d)	(£) 2532	B1 (1)
(e)	Let x_{ij} be the number of units transported from i to j where $i \in \{A, B, C, D\}$, $j \in \{P, Q, R\}$ and $x_{ij} \ge 0$ Minimise (C =) $20x_{AP} + 5x_{AQ} + 13x_{AR} + 7x_{BP} + 15x_{BQ} + 8x_{BR} + 9x_{CP} + 14x_{CQ} + 21x_{CR} + 22x_{DP} + 16x_{DQ} + 10x_{DR}$ Subject to $x_{AP} + x_{AQ} + x_{AR} \le 74$ or $\sum x_{Aj} \le 74$ $x_{BP} + x_{BQ} + x_{BR} \le 58$ or $\sum x_{Bj} \le 58$ $x_{CP} + x_{CQ} + x_{CP} \le 63$ or $\sum x_{aj} \le 63$	B1 B1 M1 A1 M1
	$x_{\text{DP}} + x_{\text{DQ}} + x_{\text{DR}} \le 85 \text{ or } \sum x_{Dj} \le 85$ $x_{\text{AP}} + x_{\text{BP}} + x_{\text{CP}} + x_{\text{DP}} \le 145 \sum x_{iP} \le 145$ $x_{\text{AQ}} + x_{\text{BQ}} + x_{\text{CQ}} + x_{\text{DQ}} \le 57 \text{ or } \sum x_{iQ} \le 57$ $x_{\text{AR}} + x_{\text{BR}} + x_{\text{CR}} + x_{\text{DR}} \le 78 \text{ or } \sum x_{iR} \le 78$	A1 A1 (7) 17 marks

Question									
Number	Scheme	Marks							
Notes for Question 5									
a1M1: A valid route, only one empty square, AQ used, θ 's balance									
a1A1: Cor	a1A1: Correct route, up to an improved solution (six numbers no zeros)								
b1M1: Fir	ding 7 shadow costs and 6 Improvement indices								
b1A1: Sha	dow costs [Alt: A(20), B(7), C(9), D(31), P (0), Q(-15), R(-21)] and improvemen	t indices CAO							
b2M1: A v	valid route, their most negative II chosen, only one empty square used, θ 's balance								
b2A1: CS	O (for part (b)) (entering DP, and exiting DQ clearly stated)								
c1M1: Fin	ding 7 shadow costs and all 6 IIs or at least 1 negative II found								
c1A1: CA	O for the shadow costs [Alt: A(20), B(7), C(9), D(22), P(0), Q(-15), R(-12)] and C	5 positive II							
c2A1: CS	D (for part (c)) + reason + optimal	1							
1101 01	0 (0520)								
dIBI: CA	0 (2532)								
e1B1: <i>x_{ii}</i>	(not just x) defined correctly (must include 'number of' (oe) and 'from i to j' (oe)).	Withold this							
mark if x_i	is further defined as taking the values of either 0 or 1								
e2B1: De	fining the set of values for <i>i</i> and <i>j</i> including non-negativity constraint - withold this	mark if							
definition	is inconsistent with their later use in the objective function and constraints (eg A, B	, in the							
definition	but 1, 2, used in constraints and objective)	···· 1.6- ·· (1.1-							
mark	ective function (anow one error either in coefficient of variable) – minimise not re	quired for this							
e1A1: CA	O – Correct objective function and minimise								
e2M1: At	least 3 constraints listed with unit coefficients (accept = or any inequality for the M	mark) – rhs							
values mu	st be correct								
e2A1: At	e2A1: At least 5 correct constraints (accept consistent use of = or \leq on at least 5)								
esai: All	/ constraint correct (accept consistent use of $=$ or \leq on all /)								
Note: if th	Note: if there are inconsistencies between the constraints and the objective function then mark to the benefit								
of the can	lidate. For example, a candidate who correctly defines x_{ij} and its set of values and v	vrites down							
the constra	ints correctly (based on their definition of x_{ij}) but in the objective function omits the	he x (so uses,							
for examp	le, AP, AQ, etc.) then this would scored B1B1M0A0M1A1A1								

Question			Mark	s						
6.(a)	Maximin B1									
6.(a)	Maximin Stage 3 2 1 0	State G H J C F A B C S	Action GT HT JT DH EG EH EJ FH FJ AD AE BF CD CF SA SB SC	Destination T T H G H J J H J E E E E F O D F F A A B C	Value 8^* 5^* 6^* min (10, 5) = 5* min (9, 8) = 8* min (8, 5) = 5 min (7, 6) = 6 min (8, 5) = 5* min (6, 8) = 5* min (17, 8) = 8* min (17, 8) = 8* min (10, 5) = 5* min (10, 5) = 5* min (11, 6) = 6 min (8, 8) = 8* min (12, 5) = 5	B N N	81 41 A1 41 A1 A 41 A1ft 41 A1	(1) .1 (10)		
(c)	Maximum weigh	t = 8 (to	onnes)			В	81	(1)		
(d)	Route: $S - B - E$	– G – T	Γ			В	81	(1)		
(e)(i)	Increase HT (by :	5) to 10				В	81			
(ii)	Maximum weigh	t = 10 (tonnes)			B	81			
	New route: S – C	B	81	(3)						
						1	<u>o mark</u>	,		

Question	Scheme	Marks						
Number	Notes for Question 6							
a1B1: CAO Throughout (b): • Condone lack of destination column and/or reversed stage numbers throughout • Only penalise incorrect result in value – ie ignore working values • Penalise absence of state or action column with first two A marks earned only • Penalise empty/errors in stage column with first A mark earned only 2 nd , 3 rd and 4 th M marks - must bring earlier optimal results into calculations at least once Penalise lack of * only once								
b1M1: Fir b1A1: CA b2M1: Se b2A1: Se b3A1: CA b3M1: Th b4A1ft: Th b5A1: CA b4M1: Fo b6A1: CA c1B1: CA	 b1M1: First stage completed. 3 rows, something in each cell b1A1: CAO condone missing * here b2M1: Second stage completed with 3 states and at least 6 rows. Bod if something in each cell b2A1: Second stage any 2 states correct b3A1: CAO all 3 states correct (no missing/extra rows) b3M1: Third stage completed with 3 states and at least 6 rows. Bod if something in each cell b4A1ft: Third stage any two states correct. Follow through their * values or the correct * values b5A1: CAO all 3 states correct (no missing/extra rows) b4M1: Fourth stage completed with 1 state and at least 3 rows. Bod if something in each cell b6A1: CAO final state correct (no missing/extra rows) 							
d1B1: CA	O route $(S - B - E - G - T)$ (dependent on scoring all M marks in (b))							
e1B1: Ind e2B1: CA e3B1: CA	e1B1: Indication of either increasing HT by 5 or increasing HT to 10 e2B1: CAO (10) e3B1: CAO (S – C – D – H – T)							
	Special Cases for (b), (c) and (d)							
SC1 Mini SC2 Maxi SC3 Mini SC4 Maxi SC5 Mini SC6 Worl SC7 Reve	max: M1 A1 M1 A0 A0 M1 A1 A0 M1 A0 B1 B1 (Max 8/12) imum: M1 A1 M1 A0 A0 M1 A0 A0 M1 A0 B0 B1 (Max 6/12) mum: As above (SC2) imax: M1 A1 M1 A0 A0 M1 A0 A0 M1 A0 B0 B0 (Max 5/12) min: As above (SC4) king forwards: M1 A0 M1 A0 A0 M1 A0 A0 M1 A0 B0 B0 (Max 4/12) rsed states: M1 A0 M1 A0 A0 M1 A0 A0 M1 A1 B1 B1 (Max 7/12)							

Question			Marks				
Number							
SCI Mini	max:	C.	G ()	A		37.1	
		Stage	State	Action	Destination	Value	
		3	G	GT	Т	8*	
			Н	HT	Т	5*	
			J	JT	Т	6*	
		2	D	DH	Н	$\max(10, 5) = 10^*$	
			Е	EG	G	$\max(9, 8) = 9$	
				EH	Н	$\max(8, 5) = 8$	
				EJ	J	$\max(7, 6) = 7^*$	
			F	FH	Н	$\max(8, 5) = 8$	
				FJ	J	$\max(5, 6) = 6^*$	
		1	Α	AD	D	$\max(8, 10) = 10$	
				AE	E	$\max(6, 7) = 7^*$	
			В	BE	E	$\max(17, 7) = 17$	
				BF	F	$\max(9, 6) = 9^*$	
			С	CD	D	max (10, 10)=10*	
				CF	F	max $(10, 6) = 10^*$	
		0	S	SA	A	$\max(11, 7) = 11$	
				SB	В	$\max(8, 9) = 9^*$	
				SC	C	$\max(12, 10) = 12$	

Weight: 9 Route: S - B - F - J - T

SC2 Maximum:

Stage	State	Action	Destination	Value
3	G	GT	Т	8*
	Н	HT	Т	5*
	J	JT	Т	6*
2	D	DH	Н	10 + 5 = 15*
	Е	EG	G	9 + 8 = 17*
		EH	Н	8 + 5 = 13
		EJ	J	7 + 6 = 13
	F	FH	Н	8 + 5 = 13*
		FJ	J	5 + 6 = 11
1	Α	AD	D	8 + 15 = 23*
		AE	E	6 + 17 = 23*
	В	BE	E	17 + 17 = 34*
		BF	F	9 + 13 = 22
	С	CD	D	10 + 15 = 25*
		CF	F	10 + 13 = 23
0	S	SA	A	11 + 23 = 34
		SB	В	8 + 34 = 42*
		SC	C	12 + 25 = 37

Route: S - B - E - G - T

Question Number		Scheme					
SC3 Minimum:							
	a.	G			X7.1		
	Stage	State	Action	Destination	Value		
	3	G	GT	Т	8*		
		H	HT	Т	5*		
		J	JT	Т	6*		
	2	D	DH	Н	10 + 5 = 15*		
		Е	EG	G	9 + 8 = 17		
			EH	Н	8 + 5 = 13*		
			EJ	J	7 + 6 = 13*		
		F	FH	Н	8 + 5 = 13		
			FJ	J	$5 + 6 = 11^*$		
	1	Α	AD	D	8 + 15 = 23		
			AE	Е	6 + 13 = 19*		
		В	BE	Е	17 + 13 = 30		
			BF	F	9 + 11 = 20*		
		С	CD	D	10 + 15 = 25		
			CF	F	10 + 11 = 21*		
	0	S	SA	А	11 + 19 = 30		
	~	~	SB	В	8 + 20 = 28*		
			SC	Ċ	12 + 21 = 33		

Route: S - B - F - J - T

SC4 Maximax:

Stage	State	Action	Destination	Value
3	G	GT	Т	8*
	Н	HT	Т	5*
	J	JT	Т	6*
2	D	DH	Н	max (10, 5) = 10*
	Е	EG	G	$\max(9, 8) = 9^*$
		EH	Н	$\max(8, 5) = 8$
		EJ	J	$\max(7, 6) = 7$
	F	FH	Н	$\max(8, 5) = 8^*$
		FJ	J	$\max(5, 6) = 6$
1	Α	AD	D	max (8, 10) = 10*
		AE	E	$\max(6, 9) = 9$
	В	BE	E	max (17, 9) = 17*
		BF	F	$\max(9, 8) = 9$
	С	CD	D	max (10, 10)=10*
		CF	F	max (10, 8) = 10*
0	S	SA	A	max (11, 10) = 11
		SB	В	max (8, 17) = 17*
		SC	C	max(12, 10) = 12

Question Number		Scheme					
SC5 Mini	min:						
		Stage	State	Action	Destination	Value	
		3	G	GT	Т	8*	
			Η	HT	Т	5*	
			J	JT	Т	6*	
		2	D	DH	Н	$\min(10, 5) = 5^*$	
			E	EG	G	$\min(9, 8) = 8$	
				EH	Н	$\min(8, 5) = 5^*$	
				EJ	J	$\min(7, 6) = 6$	
			F	FH	Н	$\min(8, 5) = 5^*$	
				FJ	J	$\min(5, 6) = 5^*$	
		1	Α	AD	D	$\min(8, 5) = 5^*$	
				AE	E	$\min(6, 5) = 5^*$	
			В	BE	E	$\min(17, 5) = 5^*$	
				BF	F	$\min(9, 5) = 5^*$	
			C	CD	D	$\min(10, 5) = 5^*$	
				CF	F	$\min(10, 5) = 5^*$	
		0	S	SA	A	$\min(11, 5) = 5^*$	
				SB	В	$\min(8, 5) = 5^*$	
				SC	C	$\min(12, 5) = 5^*$	

SC6 Working forwards S to T:

Stage	State	Action	Destination	Value
3	Α	AS	S	11*
	В	BS	S	8*
	С	CS	S	12*
2	D	DA	А	$\min(8, 11) = 8$
		DC	С	min (10, 12) =10*
	Е	EA	А	$\min(6, 11) = 6$
		EB	В	min (17, 8) = 8*
	F	FB	В	$\min(9, 8) = 8$
		FC	С	min (10, 12) =10*
1	G	GE	E	$\min(9, 8) = 8^*$
	Н	HD	D	min (10, 12) =10*
		HE	E	$\min(8, 8) = 8$
		HF	F	$\min(8, 10) = 8$
	J	JE	E	$\min(7, 8) = 7^*$
		JF	F	$\min(5, 10) = 5$
0	Т	TG	G	$\min(8, 8) = 8^*$
		TH	Н	$\min(5, 10) = 5$
		TJ	J	$\min(6, 7) = 6$

Question Number		Scheme					
SC7 Reversed States:							
		Stage	State	Action	Destination	Value	
		3	Т	TG	G	8*	
				TH	Н	5*	
				TJ	J	6*	
		2	G	GE	E	$\min(9, 8) = 8^*$	
			Н	HD	D	$\min(10, 5) = 5^*$	
				HE	E	$\min(8, 5) = 5$	
				HF	F	$\min(8, 5) = 5^*$	
			J	JE	E	$\min(7, 6) = 6$	
				JF	F	$\min(5, 6) = 5^*$	
		1	D	DA	А	$\min(8, 5) = 5$	
				DC	C	$\min(10, 5) = 5^*$	
			E	EA	А	$\min(6, 8) = 6^*$	
				EB	В	$\min(17, 8) = 8^*$	
			F	FB	В	$\min(9, 5) = 5$	
				FC	C	$\min(10, 5) = 5^*$	
		0	Α	AS	S	$\min(11, 6) = 6$	
			В	BS	S	$\min(8, 8) = 8^*$	
			С	CS	S	$\min(12, 5) = 5$	
			W	eight: 8 Ro	oute: $S - B - E$	- G - T	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom